Myelinated nerve fibre myelin resistance dependent on extracellular K+ level (Brazhe et al. 2010)

 Download zip file 
Help downloading and running models
Accession:136296
Excitation leads to rise in paranodal [K]e under the myelin. This causes structural changes in myelin structure and resistance. Current model aims to simulate this aspect. This is a space-clamped model of a double-cable nerve fibre.
Reference:
1 . Brazhe AR, Maksimov GV, Mosekilde E, Sosnovtseva O (2010) Excitation block in a nerve fibre model owing to potassium-dependent changes in myelin resistance Journal of Interface Focus 1(1):86-100
Model Information (Click on a link to find other models with that property)
Model Type: Extracellular;
Brain Region(s)/Organism:
Cell Type(s): Myelinated neuron;
Channel(s): I Na,p; I Na,t; I K; I K,leak; I_Ks; Na/K pump;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Lua;
Model Concept(s): Intermittent block;
Implementer(s): Brazhe, Alexey [brazhe at gmail.com];
Search NeuronDB for information about:  I Na,p; I Na,t; I K; I K,leak; I_Ks; Na/K pump;
-- Simple ODE solvers to use with Lua
--

module(..., package.seeall);

--TODO: 
-- * Runge-Kutta-Fehlberg with adaptive step size

-- One of the simplest: Runge-Kutta  4th order (non-stiff ODES)
function rk4(U0, t, h, s, obj)
   local k1, k2, k3, k4
   local U = U0+0
   local U1      -- make a copy

   k1 = obj:derivs(t, U)*h
   k2 = obj:derivs(t + .5*h, U + .5*k1) * h
   k3 = obj:derivs(t + .5*h, U + .5*k2) * h
   k4 = obj:derivs(t + h, U + k3) * h
   
   U1 = (k1 + 2*k2 + 2*k3 + k4) * (1/6)
   return U1, t+h, h
end


rkc_module = require 'rkc' -- Runge-Kutta-Chebyshev for mildly stiff ODEs
rkc = rkc_module.rkc    -- pointer to the default version of integrator
rkc_a = rkc_module.rkc_a



Loading data, please wait...