Reconstrucing sleep dynamics with data assimilation (Sedigh-Sarvestani et al., 2012)

 Download zip file 
Help downloading and running models
Accession:146554
We have developed a framework, based on the unscented Kalman filter, for estimating hidden states and parameters of a network model of sleep. The network model includes firing rates and neurotransmitter output of 5 cell-groups in the rat brain.
Reference:
1 . Sedigh-Sarvestani M, Schiff SJ, Gluckman BJ (2012) Reconstructing mammalian sleep dynamics with data assimilation. PLoS Comput Biol 8:e1002788 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Acetylcholine; Norephinephrine; Gaba; Serotonin;
Simulation Environment: MATLAB;
Model Concept(s): Oscillations; Parameter Fitting; Tutorial/Teaching; Sleep; unscented Kalman filter;
Implementer(s): Sedigh-Sarvestani, Madineh [m.sedigh.sarvestani at gmail.com]; Schiff, Steven [sschiff at psu.edu]; Gluckman, Bruce [BruceGluckman at psu.edu];
Search NeuronDB for information about:  Acetylcholine; Norephinephrine; Gaba; Serotonin;
%this function holds parameters of the DB model of sleep with a slight modification to include
%an additional parameter for SCN variation, duplicated from:
%Diniz Behn and Booth, J Neurophysiol 103:1937-1953, 2010.
function P= OriginalDBParams_SCN

P.cgamma=[5 5 4 3 3]; %
P.ctau=[25 25 10 10 10];

P.gALC=3.5; P.gNLC=1.5; P.gGLC=1.5; 
P.gADR=3.5; P.gSDR=1.5; P.gGDR=1.5;
P.gAR=2.5; P.gNR=3.5; P.gSR=3.5; P.gGR=1.25;
P.gAWR=1; P.gGWR=1.7;
P.gNVLPO=2; P.gSVLPO=2; P.gGVLPO=0.5;
P.gGSCNLC=4;P.gGSCNDR=4; P.gGSCNVLPO=1.8; P.gGSCNR=0.3;

%firing rate parameters (LC,DR,VLPO,R,WR)
P.Ftau=[25 25 10 1 10];

%additional parameter
P.pSCN=0;


P.Fmax_5=5;
P.Fmax=[6.5 6.5 5 5 P.Fmax_5];
P.Falpha=[0.75 0.75 0.25 0.25 0.25];
%P.betaLC=2; P.betaDR=2; P.betaR=-0.5; P.betaWR=-0.2;
P.betaLC=-1.85; P.betaDR=-1.85; P.betaR=-0.82; P.betaWR=-0.2;  %used FBFD

P.beta_h=-2.5;%we've left betaVLPO out because it is dependent on h

%homeostatic sleep constants
P.thetaW=3; P.tauhs=200; P.tauhw=700;
P.tauhs_i=1/200; P.tauhw_i=1/700;
return;

Loading data, please wait...