Dendritic signals command firing dynamics in a Cerebellar Purkinje Cell model (Genet et al. 2010)

 Download zip file   Auto-launch 
Help downloading and running models
This model endows the dendrites of a reconstructed Purkinje cells (PC) with the mechanism of Ca-dependent plateau potentials and spikes described in Genet, S., and B. Delord. 2002. A biophysical model of nonlinear dynamics underlying plateau potentials and calcium spikes in Purkinje cell dendrites. J. Neurophysiol. 88:2430–2444). It is a part of a comprehensive mathematical study suggesting that active electric signals in the dendrites of PC command epochs of firing and silencing of the PC soma.
1 . Genet S, Sabarly L, Guigon E, Berry H, Delord B (2010) Dendritic signals command firing dynamics in a mathematical model of cerebellar Purkinje cells. Biophys J 99:427-36 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Cerebellum Purkinje cell;
Channel(s): I K; I Ca,p; Ca pump;
Gap Junctions:
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Simplified Models; Active Dendrites; Detailed Neuronal Models; Action Potentials; Calcium dynamics; Conductance distributions;
Implementer(s): Genet, Stéphane [];
Search NeuronDB for information about:  Cerebellum Purkinje cell; I K; I Ca,p; Ca pump; Gaba; Glutamate;
Loading data, please wait...