Nonlinear neuronal computation based on physiologically plausible inputs (McFarland et al. 2013)


Help downloading and running models
Accession:154192
"... Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron’s inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron’s response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. ... ”
Reference:
1 . McFarland JM, Cui Y, Butts DA (2013) Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLoS Comput Biol 9:e1003143 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Retina ganglion cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB (web link to model);
Model Concept(s): Parameter Fitting; Rate-coding model neurons;
Implementer(s): McFarland, James M [jmmcfarl at umd.edu];
Search NeuronDB for information about:  Retina ganglion cell;
(located via links below)
Loading data, please wait...