TRPM8-dependent dynamic response in cold thermoreceptors (Olivares et al. 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:182988
This model reproduces the dynamic response of cold thermoreceptors, transiently changing the firing rate upon heating or cooling. It also displays the 'static' or adapted firing patterns observed in these receptors.
Reference:
1 . Olivares E, Salgado S, Maidana JP, Herrera G, Campos M, Madrid R, Orio P (2015) TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor. PLoS One 10:e0139314 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Dorsal Root Ganglion (DRG) cell; Dorsal Root Ganglion cell: cold sensing;
Channel(s): I Na,p; I Na,t; I K; I K,Ca; I trp; I TRPM8;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Bursting; Temporal Pattern Generation; Oscillations; Homeostasis; Temperature; Sensory coding;
Implementer(s): Orio, Patricio [patricio.orio at uv.cl];
Search NeuronDB for information about:  I Na,p; I Na,t; I K; I K,Ca; I trp; I TRPM8;
/
OlivaresEtAl2015
Neuron
data
dr.mod
ou.mod
sdsr.mod
trpm8.mod
mosinit.hoc
                            
TITLE Isd and Isr currents of the Huber-Braun Model
: Braun et al. Int J Bifurcation and Chaos 8(5):881-889 (1998)
: Slow and subthreshol-activated Na+ and K+ currents responsible for oscillation
: Isr fixed fixed with a saturating term
:
: Written by Patricio Orio, Jul 2006
:

NEURON {
	SUFFIX sdsr
	USEION na READ ena WRITE ina
	USEION k READ ek WRITE ik
	RANGE gsd, gsr, isd
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	gsd  = 0.00035   (mho/cm2)
	gsr  = 0.0004   (mho/cm2)
	V0sd = -40      (mV)
	zsd = 0.1		(/mV)
    eta = 12        (cm2/mA)
    k = 0.17        (1)
    tsd = 10        (ms)
    tsr = 24        (ms)
	n = 2
	Kd = 0.4	
}

STATE {
	asd
	asr
}

ASSIGNED {
	celsius	(degC)
	ina     (mA/cm2)
	ik      (mA/cm2)
    v       (mV)
    rho     (1)
    ena     (mV)
    ek      (mV)
    isd     (mA/cm2)
}

INITIAL {
    rho = 1.3^((celsius - 25 (degC))/10(degC))
    asd = 1/(1+exp(-zsd*(v - V0sd)))
    asr = (-eta * asd * rho * gsd * (v-ena))/k
    if (asr < 0) {asr = 0}
}

BREAKPOINT {
	SOLVE states METHOD cnexp
    rho = 1.3^((celsius - 25 (degC))/10(degC))
	isd = rho * gsd * asd * (v - ena)
	ina = isd
	ik  = rho * gsr * (v - ek) * asr^n /(Kd^n + asr^n)
}

DERIVATIVE states {
    LOCAL phi, asdinf
    phi = 3^((celsius - 25 (degC))/ 10 (degC))
    asdinf = 1/(1+exp(-zsd*(v - V0sd)))
    asd' = phi * (asdinf - asd) / tsd
    asr' = phi * (-eta * isd - k*asr)/tsr
}


Loading data, please wait...