Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)

 Download zip file 
Help downloading and running models
Accession:187604
This model is a full-scale, biologically constrained rodent hippocampal CA1 network model that includes 9 cells types (pyramidal cells and 8 interneurons) with realistic proportions of each and realistic connectivity between the cells. In addition, the model receives realistic numbers of afferents from artificial cells representing hippocampal CA3 and entorhinal cortical layer III. The model is fully scaleable and parallelized so that it can be run at small scale on a personal computer or large scale on a supercomputer. The model network exhibits spontaneous theta and gamma rhythms without any rhythmic input. The model network can be perturbed in a variety of ways to better study the mechanisms of CA1 network dynamics. Also see online code at http://bitbucket.org/mbezaire/ca1 and further information at http://mariannebezaire.com/models/ca1
References:
1 . Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife [PubMed]
2 . Bezaire M, Raikov I, Burk K, Armstrong C, Soltesz I (2016) SimTracker tool and code template to design, manage and analyze neural network model simulations in parallel NEURON bioRxiv
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 interneuron oriens alveus GABA cell; Hippocampus CA1 basket cell; Hippocampus CA1 stratum radiatum interneuron; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA1 PV+ fast-firing interneuron;
Channel(s): I Na,t; I K; I K,leak; I h; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s): GabaA; GabaB; Glutamate; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; NEURON (web link to model);
Model Concept(s): Oscillations; Methods; Connectivity matrix; Laminar Connectivity; Gamma oscillations;
Implementer(s): Bezaire, Marianne [mariannejcase at gmail.com]; Raikov, Ivan [ivan.g.raikov at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 interneuron oriens alveus GABA cell; GabaA; GabaB; Glutamate; Gaba; I Na,t; I K; I K,leak; I h; I K,Ca; I Calcium; Gaba; Glutamate;
TITLE A-type potassium channel (voltage dependent, for O-LM cell)

COMMENT
A-type potassium channel (voltage dependent, for O-LM cell)

Ions: k

Style: quasi-ohmic

From: 1.	Zhang, L. and McBain, J. Voltage-gated potassium currents in
	stratum oriens-alveus inhibitory neurons of the rat CA1
	hippocampus, J. Physiol. 488.3:647-660, 1995.

		Activation V1/2 = -14 mV
		slope = 16.6
		activation t = 5 ms
		Inactivation V1/2 = -71 mV
		slope = 7.3
		inactivation t = 15 ms
		recovery from inactivation = 142 ms

2.	Martina, M. et al. Functional and Molecular Differences between
	Voltage-gated K+ channels of fast-spiking interneurons and pyramidal
	neurons of rat hippocampus, J. Neurosci. 18(20):8111-8125, 1998.	
	(only the gmax is from this paper)

		gmax = 0.0175 mho/cm2
		Activation V1/2 = -6.2 +/- 3.3 mV
		slope = 23.0 +/- 0.7 mV
		Inactivation V1/2 = -75.5 +/- 2.5 mV
		slope = 8.5 +/- 0.8 mV
		recovery from inactivation t = 165 +/- 49 ms  

3.	Warman, E.N. et al.  Reconstruction of Hippocampal CA1 pyramidal
	cell electrophysiology by computer simulation, J. Neurophysiol.
	71(6):2033-2045, 1994.

		gmax = 0.01 mho/cm2
		(number taken from the work by Numann et al. in guinea pig
		CA1 neurons)

Updates:
2014 December (Marianne Bezaire): documented
ENDCOMMENT


UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
}
 
NEURON {
        SUFFIX ch_KvAolm
        USEION k READ ek WRITE ik
        RANGE gmax,ik
        GLOBAL ainf, binf, aexp, bexp, tau_b
        RANGE myi, g
}
 
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
 
PARAMETER {
        v (mV)
        p = 5 (degC)
        dt (ms)
        gmax = 0.0165 (mho/cm2)	:from Martina et al.
        ek = -90 (mV)
	tau_a = 5 (ms)
}
 
STATE {
        a b
}
 
ASSIGNED {
        ik (mA/cm2)
	ainf binf aexp bexp
	tau_b
	myi (mA/cm2)
	g (mho/cm2)
}
 
BREAKPOINT {
        SOLVE deriv METHOD derivimplicit
		g = gmax*a*b
        ik = g*(v - ek)
	myi = ik
}
 
INITIAL {
	rates(v)
	a = ainf
	b = binf
}

DERIVATIVE deriv {  :Computes state variables m, h, and n rates(v)      
		: at the current v and dt.
        a' = (ainf - a)/(tau_a)
        b' = (binf - b)/(tau_b)
}
 
PROCEDURE rates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
        LOCAL alpha_b, beta_b
	TABLE ainf, aexp, binf, bexp, tau_a, tau_b  DEPEND dt, p FROM -200
TO 100 WITH 300
	alpha_b = 0.000009/exp((v-26)/18.5)
	beta_b = 0.014/(exp((v+70)/(-11))+0.2)
        ainf = 1/(1 + exp(-(v + 14)/16.6))
        aexp = 1 - exp(-dt/(tau_a))
	tau_b = 1/(alpha_b + beta_b)
        binf = 1/(1 + exp((v + 71)/7.3))
        bexp = 1 - exp(-dt/(tau_b))
}
 
UNITSON


Loading data, please wait...