CA3 pyramidal neuron (Lazarewicz et al 2002)

 Download zip file 
Help downloading and running models
Accession:20007
The model shows how using a CA1-like distribution of active dendritic conductances in a CA3 morphology results in dendritic initiation of spikes during a burst.
Reference:
1 . Lazarewicz MT, Migliore M, Ascoli GA (2002) A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation. Biosystems 67:129-37 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s): I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I CAN; I Calcium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Dendritic Action Potentials; Bursting; Active Dendrites; Influence of Dendritic Geometry; Detailed Neuronal Models; Action Potentials;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu]; Lazarewicz, Maciej [mlazarew at gmu.edu];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I CAN; I Calcium;
TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	v 		(mV)
	celsius = 24	(degC)
	gbar	= .003 	(mho/cm2)
        vhalfn	= 13   	(mV)
        a0n	= 0.02  (/ms)
        zetan	= -3    (1)
        gmn	= 0.7  	(1)
	nmax	= 2  	(1)
	q10	= 1	(1)
}

NEURON {
	SUFFIX KdrM99SL
	USEION k WRITE ik
        RANGE  gkdr,gbar,ik
	GLOBAL ninf,taun
}

STATE { n }

ASSIGNED {
	ik 	(mA/cm2)
        ninf	
        gkdr
        taun
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gkdr 	= gbar * n
	ik 	= gkdr * ( v + 90.0 )
}

INITIAL {
	rates(v)
	n=ninf
}

FUNCTION alpn(v(mV)) {
  alpn = exp( 1.e-3 * zetan * ( v - vhalfn ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) 
}

FUNCTION betn(v(mV)) {
  betn = exp( 1.e-3 * zetan * gmn * ( v - vhalfn ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v)
        n' = ( ninf - n ) / taun
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt	= q10 ^ ( ( celsius - 24 ) / 10 )
        a 	= alpn(v)
        ninf 	= 1 / ( 1 + a )
        taun 	= betn(v) / ( qt * a0n * ( 1 + a ) )
	if (taun<nmax) { taun=nmax }
}

Loading data, please wait...