Model of a BDNF feedback loop (Zhang et al 2016)

 Download zip file 
Help downloading and running models
Accession:222715
"Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins with an IA-induced release of brain-derived neurotrophic factor (BDNF), which in turn leads to rapid phosphorylation of the cAMP response element-binding protein (pCREB), and a subsequent increase in the level of the beta isoform of the CCAAT/enhancer binding protein (C/EBPbeta). ... " See paper for more.
Reference:
1 . Zhang Y, Smolen P, Alberini CM, Baxter DA, Byrne JH (2016) Computational model of a positive BDNF feedback loop in hippocampal neurons following inhibitory avoidance training. Learn Mem 23:714-722 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism: Hippocampus;
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: XPP;
Model Concept(s): Signaling pathways;
Implementer(s): Zhang, Yili [Yili.Zhang at uth.tmc.edu];
Loading data, please wait...