Human seizures couple across spatial scales through travelling wave dynamics (Martinet et al 2017)


Help downloading and running models
Accession:228373
" ... We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms—namely, the effects of an increased extracellular potassium concentration diffusing in space—that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures—and connecting these dynamics to specific biological mechanisms—promises new insights to treat this devastating disease.
Reference:
1 . Martinet LE, Fiddyment G, Madsen JR, Eskandar EN, Truccolo W, Eden UT, Cash SS, Kramer MA (2017) Human seizures couple across spatial scales through travelling wave dynamics. Nat Commun 8:14896 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neural mass;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB (web link to model);
Model Concept(s): Epilepsy; Spatio-temporal Activity Patterns;
Implementer(s): Martinet, L-E ; Kramer, M.A [mak at bu.edu];
(located via links below)
Loading data, please wait...