Locational influence of dendritic PIC on input-output properties of spinal motoneurons (Kim 2017)

 Download zip file 
Help downloading and running models
Accession:239039
How does the dendritic location of calcium persistent inward current (Ca-PIC) influence dendritic excitability and firing behavior across the spinal motoneuron pool? This issue was investigated developing a model motoneuron pool where model parameters were analytically determined to reflect key motoneuron type-specific properties experimentally identified. The simulation results point out the negative relationship between the distance of Ca-PIC source from the soma and cell recruitment threshold as a basis underlying the systematic variation in input-output properties of motoneurons over the motoneuron pool.
References:
1 . Kim H (2017) Impact of the localization of dendritic calcium persistent inward current on the input-output properties of spinal motoneuron pool: a computational study. J Appl Physiol (1985) 123:1166-1187 [PubMed]
2 . Kim H, Jones KE, Heckman CJ (2014) Asymmetry in signal propagation between the soma and dendrites plays a key role in determining dendritic excitability in motoneurons. PLoS One 9:e95454 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Spinal cord L motor neuron alpha;
Channel(s): I Calcium; I Potassium; I Sodium; I_AHP;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: XPP;
Model Concept(s): Active Dendrites;
Implementer(s): Kim, Hojeong [hojeong.kim03 at gmail.com];
Search NeuronDB for information about:  Spinal cord L motor neuron alpha; I Sodium; I Calcium; I Potassium; I_AHP;
Loading data, please wait...