E-I balance modulates formation and dynamics of neuronal assemblies (Sadeh and Clopath, accepted)

 Download zip file 
Help downloading and running models
Accession:266954
"Here we studied this question in large-scale cortical networks composed of excitatory (E) and inhibitory (I) neurons. We found that the dynamics of the network in which neuronal assemblies are embedded is important for their induction. In networks with strong E-E coupling at the border of E-I balance, increasing the number of perturbed neurons enhanced the potentiation of ensembles. This was, however, accompanied by off-target potentiation of connections from unperturbed neurons. When strong E-E connectivity was combined with dominant E-I interactions, formation of ensembles became specific. Counter-intuitively, increasing the number of perturbed neurons in this regime decreased the average potentiation of individual synapses, leading to an optimal assembly formation at intermediate sizes. This was due to potent lateral inhibition in this regime, which also slowed down the formation of neuronal assemblies, resulting in a speed-accuracy trade-off in the performance of the networks in pattern completion and behavioral discrimination. Our results therefore suggest that the two regimes might be suited for different cognitive tasks, with fast regimes enabling crude detections and slow but specific regimes favoring finer discriminations."
Reference:
1 . Sadeh S, Clpath C (accepted) Excitatory-inhibitory balance modulates the formation and dynamics of neuronal assemblies in cortical networks Sciences Advances
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s): Abstract integrate-and-fire leaky neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB;
Model Concept(s):
Implementer(s): Sadeh, Sadra [s.sadeh at ucl.ac.uk];
 
File not selected

<- Select file from this column.
Loading data, please wait...