Olfactory Bulb Network (Davison et al 2003)

 Download zip file 
Help downloading and running models
Accession:2730
A biologically-detailed model of the mammalian olfactory bulb, incorporating the mitral and granule cells and the dendrodendritic synapses between them. The results of simulation experiments with electrical stimulation agree closely in most details with published experimental data. The model predicts that the time course of dendrodendritic inhibition is dependent on the network connectivity as well as on the intrinsic parameters of the synapses. In response to simulated odor stimulation, strongly activated mitral cells tend to suppress neighboring cells, the mitral cells readily synchronize their firing, and increasing the stimulus intensity increases the degree of synchronization. For more details, see the reference below.
Reference:
1 . Davison AP, Feng J, Brown D (2003) Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. J Neurophysiol 90:1921-35 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I L high threshold; I A; I K; I K,leak; I M; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Synchronization; Spatio-temporal Activity Patterns; Olfaction;
Implementer(s): Davison, Andrew [Andrew.Davison at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; GabaA; AMPA; NMDA; I Na,t; I L high threshold; I A; I K; I K,leak; I M; I K,Ca; I Sodium; I Calcium; I Potassium; Gaba; Glutamate;
/
bulbNet
README *
cadecay.mod *
flushf.mod *
kA.mod *
kca.mod *
kfasttab.mod *
kM.mod *
kslowtab.mod *
lcafixed.mod *
nafast.mod *
nagran.mod *
nmdanet.mod *
bulb.hoc
calcisilag.hoc *
ddi_baseline.gnu *
ddi_baseline.ses *
experiment_ddi_baseline.hoc *
experiment_odour_baseline.hoc *
granule.tem *
init.hoc *
input.hoc *
input1 *
mathslib.hoc *
mitral.tem *
mosinit.hoc *
odour_baseline.connect
odour_baseline.gnu *
odour_baseline.ses *
parameters_ddi_baseline.hoc *
parameters_odour_baseline.hoc *
screenshot.png *
tabchannels.dat *
tabchannels.hoc *
                            
// granule.tem
// Template for three-compartment granule cell model
// Andrew Davison, The Babraham Institute, 2000

begintemplate Gran
  public soma, periph, deep, AMPAr, NMDAr, spiketimes, spikecount
  create soma, periph, deep, s2d, s2p
  objref AMPAr, NMDAr, spiketimes, spikecount

  proc init() { local Len, Erest, RM, p, q, Atotal, gsp, gsd, AMPAtau, NMDAalpha, NMDAbeta, Erev, rsd, rsp
    create soma, periph, deep, s2d, s2p

    spiketimes = new Vector()
    lastspikecount = 0

    Erest		= -65		// mV
    Atotal		= 8353		// um2
    gsp			= 3.08e-10	// S/cm2
    gsd			= 4.34e-10
    RM			= 120000	// ohm.cm2
    Len			= 50
    p			= 0.0136
    q			= 0.308
    rsd 		= 1/(gsd*Atotal)
    rsp 		= 1/(gsp*Atotal)
    NMDAalpha		= 0.0163	// ms-1
    NMDAbeta		= 0.00292	// ms-1
    AMPAtau		= 5.5		// ms
    Erev		= 0		// mV

    soma {
      L 		= Len
      diam 		= p*Atotal/(PI*Len)
      Ra 		= PI/(4*Len*Atotal)
      insert pas
      e_pas 		= Erest		// reversal potential mV
      g_pas 		= 1/RM 		// membrane conductance S/cm2
      insert nagrantab
      insert kslowtab
      insert kM
      insert kA
      gnabar_nagrantab 	= 0.1611	// S/cm2
      gkbar_kslowtab 	= 0.1313
      gkbar_kM 		= 0.1334
      gkbar_kA 		= 0.0088
    }
    periph {
      L 		= Len
      diam 		= q*Atotal/(PI*Len)
      Ra 		= PI/(4*Len*Atotal)
      insert pas
      e_pas 		= Erest
      g_pas 		= 1/RM
      insert nagrantab
      insert kslowtab
      gnabar_nagrantab 	= 0.1355
      gkbar_kslowtab 	= 0.0243
      AMPAr = new ExpSyn(0.5)
      AMPAr.tau 	= AMPAtau
      AMPAr.e 		= Erev
      NMDAr = new NMDA(0.5)
      NMDAr.Alpha	= NMDAalpha
      NMDAr.Beta	= NMDAbeta
      NMDAr.e		= Erev
      spikecount = new APCount(0.5)
      spikecount.thresh = -30
      spikecount.record(spiketimes)
    }
    deep {
      L 		= Len
      diam 		= (1-p-q)*Atotal/(PI*Len)
      Ra 		= PI/(4*Len*Atotal)
      insert pas
      e_pas 		= Erest
      g_pas 		= 1/RM
    }
    s2d { 
      diam 		= 1
      Ra = PI*diam*diam/(4*Len*Atotal) * ( 1/gsd )
      L 		= 1
    }
    s2p { 
      diam 		= 1
      Ra = PI*diam*diam/(4*Len*Atotal) * ( 1/gsp )
      L 		= 1
    }

    soma connect s2p(0), 0
    s2p connect periph(0), 1
    soma connect s2d(0), 1
    s2d connect deep(0), 1

    // set reversal potentials, etc.
    forall if (ismembrane("na_ion")) {
      ena = 45	// mV
    }
    forall if (ismembrane("k_ion")) {
      ek  = -70	//  mV
    }

  }

endtemplate Gran

Loading data, please wait...