Olfactory Bulb Network (Davison et al 2003)

 Download zip file 
Help downloading and running models
Accession:2730
A biologically-detailed model of the mammalian olfactory bulb, incorporating the mitral and granule cells and the dendrodendritic synapses between them. The results of simulation experiments with electrical stimulation agree closely in most details with published experimental data. The model predicts that the time course of dendrodendritic inhibition is dependent on the network connectivity as well as on the intrinsic parameters of the synapses. In response to simulated odor stimulation, strongly activated mitral cells tend to suppress neighboring cells, the mitral cells readily synchronize their firing, and increasing the stimulus intensity increases the degree of synchronization. For more details, see the reference below.
Reference:
1 . Davison AP, Feng J, Brown D (2003) Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. J Neurophysiol 90:1921-35 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I L high threshold; I A; I K; I K,leak; I M; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Synchronization; Spatio-temporal Activity Patterns; Olfaction;
Implementer(s): Davison, Andrew [Andrew.Davison at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; GabaA; AMPA; NMDA; I Na,t; I L high threshold; I A; I K; I K,leak; I M; I K,Ca; I Sodium; I Calcium; I Potassium; Gaba; Glutamate;
/
bulbNet
README *
cadecay.mod *
flushf.mod *
kA.mod *
kca.mod *
kfasttab.mod *
kM.mod *
kslowtab.mod *
lcafixed.mod *
nafast.mod *
nagran.mod *
nmdanet.mod *
bulb.hoc
calcisilag.hoc *
ddi_baseline.gnu *
ddi_baseline.ses *
experiment_ddi_baseline.hoc *
experiment_odour_baseline.hoc *
granule.tem *
init.hoc *
input.hoc *
input1 *
mathslib.hoc *
mitral.tem *
mosinit.hoc *
odour_baseline.connect
odour_baseline.gnu *
odour_baseline.ses *
parameters_ddi_baseline.hoc *
parameters_odour_baseline.hoc *
screenshot.png *
tabchannels.dat *
tabchannels.hoc *
                            
TITLE HH fast potassium channel with FUNCTION_TABLEs
: Hodgkin - Huxley potassium channel using the data given in
: US Bhalla and JM Bower, J. Neurophysiol. 69:1948-1983 (1993)
: Needs the files tabchannels.dat and tabchannels.hoc
: Andrew Davison, The Babraham Institute, 1998.

NEURON {
	SUFFIX kfasttab
	USEION k READ ek WRITE ik
	RANGE gkbar, ik
	GLOBAL ninf, kinf, ntau, ktau
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
PARAMETER {
	v (mV)
	dt (ms)
	gkbar= 0.120 (mho/cm2) <0,1e9>
	ek = -70 (mV)
}
STATE {
	n k
}
ASSIGNED {
	ik (mA/cm2)
	ninf
	kinf
	ntau (ms)
	ktau (ms)
}

INITIAL {
	rates(v)
	n = ninf
	k = kinf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	ik = gkbar*n*n*k*(v - ek)
}

DERIVATIVE states {
	rates(v)
	n' = (ninf - n)/ntau
	k' = (kinf - k)/ktau
}

FUNCTION_TABLE tabninf(v(mV))
FUNCTION_TABLE tabntau(v(mV)) (ms)
FUNCTION_TABLE tabkinf(v(mV))
FUNCTION_TABLE tabktau(v(mV)) (ms)

PROCEDURE rates(v(mV)) {
	ninf = tabninf(v)
	ntau = tabntau(v) 
	kinf = tabkinf(v)
	ktau = tabktau(v)
}

Loading data, please wait...