MyFirstNEURON (Houweling, Sejnowski 1997)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:3808
MyFirstNEURON is a NEURON demo by Arthur Houweling and Terry Sejnowski. Perform experiments from the book 'Electrophysiology of the Neuron, A Companion to Shepherd's Neurobiology, An Interactive Tutorial' by John Huguenard & David McCormick, Oxford University Press 1997, or design your own one or two cell simulation.
References:
1 . Huguenard J, McCormick DA, Shepherd GM (1997) Electrophysiology of the Neuron, A Companion to Shepherd's Neurobiology, An Interactive Tutorial. Electrophysiology of the Neuron
2 . Houweling AR, Sejnowski TJ (1997) Personal communication from Arthur Houweling.
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Activity Patterns; Bursting; Ion Channel Kinetics; Temporal Pattern Generation; Oscillations; Parameter Fitting; Detailed Neuronal Models; Tutorial/Teaching; Action Potentials; Sleep; Calcium dynamics;
Implementer(s): Houweling, Arthur [Arthur at Salk.edu];
Search NeuronDB for information about:  GabaA; GabaB; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium;
/
MyFirstNEURON
MyFirstNEURONmanual_files
readme.txt
ampa.mod
ampa2.mod
cadyn.mod
gabaA.mod
gabaA2.mod
gabaB.mod
gabaB2.mod
HH1.mod
HH2.mod
ia.mod *
iahp.mod
iahp2.mod
ic.mod *
ican.mod
ih.mod *
il.mod *
im.mod
it.mod *
it2.mod
leak.mod *
nmda.mod
nmda2.mod
synstim.mod
about.hoc
e1.par
e10.par
e11a.par
e11b.par
e12.par
e13.par
e14.par
e15a.par
e15b.par
e16a.par
e16b.par
e16c.par
e17a.par
e17b.par
e3.par
e5.par
e7.par
manual.htm
mcontrl1.hoc
mcontrl2.hoc
mcontrl3.hoc
methods.htm
mosinit.hoc
my1stnrn.hoc
parpanl1.hoc
parpanl2.hoc
parpanl3.hoc
plotcurr.hoc
                            
TITLE Hodgkin-Huxley like sodium, potassium, and leak channels

COMMENT
        *********************************************
        reference:      McCormick & Huguenard (1992) 
			J.Neurophysiology 68(4), 1384-1400
        found in:       cortical pyramidal cells
        *********************************************
        Assembled for MyFirstNEURON by Arthur Houweling
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
}
 
NEURON {
        SUFFIX HH
        USEION na READ ena WRITE ina
        USEION k READ ek WRITE ik
        NONSPECIFIC_CURRENT il
        RANGE gnabar,gkbar,gl,el,m_inf,h_inf,n_inf,tau_m,tau_n,tau_h,ina,ik 
}
 
PARAMETER {
        v		(mV)
        celsius		(degC)
        dt		(ms)
        gnabar= 0.1	(mho/cm2)
        ena		(mV)
        gkbar= 0.01	(mho/cm2)
        ek		(mV)
        gl= 0		(mho/cm2)
        el		(mV)
}
 
STATE {
        m h n
}
 
ASSIGNED {
        ina	(mA/cm2)
        ik	(mA/cm2)
        il	(mA/cm2)
        m_inf h_inf n_inf tau_m tau_h tau_n
	tadj
}
 
BREAKPOINT {
        SOLVE states
        ina = gnabar * m*m*m*h * (v - ena)
        ik = gkbar * n*n*n*n * (v - ek)      
        il = gl * (v-el)
}
 
UNITSOFF
INITIAL {
	rates(v)
	m = m_inf
	h = h_inf
	n = n_inf
}

PROCEDURE states() { 
        rates(v)   
        m = m + (1-exp(-dt/tau_m)) * (m_inf-m)
        h = h + (1-exp(-dt/tau_h)) * (h_inf-h)
        n = n + (1-exp(-dt/tau_n)) * (n_inf-n)
}
 
PROCEDURE rates(v) { LOCAL alpha, beta, q10, tinc
        TABLE m_inf, tau_m, h_inf, tau_h, n_inf, tau_n DEPEND dt, 
	      celsius FROM -100 TO 100 WITH 200
	tadj = 3.0^((celsius-23.5)/10)
	:"m" sodium activation system
          alpha = .091 * vtrap(v+38,5)
          beta =  .062 * vtrap(-(v+38),5) 
       	  tau_m = 1 / (alpha+beta) / tadj
       	  m_inf = alpha/(alpha+beta)
	:"h" sodium inactivation system
       	  alpha = .016 * exp(-(v+55)/15)
       	  beta = 2.07 / (1+exp((17-v)/21))
       	  tau_h = 1 / (alpha+beta) / tadj
       	  h_inf = alpha/(alpha+beta)
	:"n" potassium activation system
       	  alpha = .01*vtrap(v+45,5) 
       	  beta = .17*exp(-(v+50)/40)
       	  tau_n = 1 / (alpha+beta) / tadj
       	  n_inf = alpha/(alpha+beta)
}
 
FUNCTION vtrap( x, b) {
	: Traps for 0 in denominator of rate equations
	if (fabs(x/b) < 1e-6) {
	  vtrap = b+x/2 }
	else {
	  vtrap = x / (1-exp(-x/b)) }
}
UNITSON


Loading data, please wait...