Cerebellar purkinje cell (De Schutter and Bower 1994)

 Download zip file 
Help downloading and running models
Accession:7176
Tutorial simulation of a cerebellar Purkinje cell. This tutorial is based upon a GENESIS simulation of a cerebellar Purkinje cell, modeled and fine-tuned by Erik de Schutter. The tutorial assumes that you have a basic knowledge of the Purkinje cell and its synaptic inputs. It gives visual insight in how different properties as concentrations and channel conductances vary and interact within a real Purkinje cell.
References:
1 . De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 71:375-400 [PubMed]
2 . De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. J Neurophysiol 71:401-19 [PubMed]
3 . Staub C, De Schutter E, Knopfel T (1994) Voltage-imaging and simulation of effects of voltage- and agonist-activated conductances on soma-dendritic voltage coupling in cerebellar Purkinje cells. J Comput Neurosci 1:301-11 [PubMed]
4 . De Schutter E, Bower JM (1994) Simulated responses of cerebellar Purkinje cells are independent of the dendritic location of granule cell synaptic inputs. Proc Natl Acad Sci U S A 91:4736-40 [PubMed]
5 . De Schutter E (1998) Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model. J Neurophysiol 80:504-19 [PubMed]
6 . Jaeger D, De Schutter E, Bower JM (1997) The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study. J Neurosci 17:91-106 [PubMed]
7 . de Schutter E (1994) Modelling the cerebellar Purkinje cell: experiments in computo. Prog Brain Res 102:427-41 [PubMed]
8 . De Schutter E (1997) A new functional role for cerebellar long-term depression. Prog Brain Res 114:529-42 [PubMed]
9 . Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Hausser M, De Schutter E (2007) Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 54:121-36 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Cerebellum Purkinje cell;
Channel(s): I Na,p; I Na,t; I T low threshold; I p,q; I A; I K; I M; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: GENESIS;
Model Concept(s): Activity Patterns; Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Tutorial/Teaching; Synaptic Integration;
Implementer(s): Cornelis, Hugo [hugo at bbf.uia.ac.be]; Airong, Dong [tard at fimmu.com];
Search NeuronDB for information about:  Cerebellum Purkinje cell; I Na,p; I Na,t; I T low threshold; I p,q; I A; I K; I M; I K,Ca; I Sodium; I Calcium; I Potassium;
 
/
Purkinje_tutorial
884
                            
File not selected

<- Select file from this column.
Loading data, please wait...