Spiking neuron model of the basal ganglia (Humphries et al 2006)

 Download zip file 
Help downloading and running models
Accession:83559
A spiking neuron model of the basal ganglia (BG) circuit (striatum, STN, GP, SNr). Includes: parallel anatomical channels; tonic dopamine; dopamine receptors in striatum, STN, and GP; burst-firing in STN; GABAa, AMPA, and NMDA currents; effects of synaptic location. Model demonstrates selection and switching of input signals. Replicates experimental data on changes in slow-wave (<1 Hz) and gamma-band oscillations within BG nuclei following lesions and pharmacological manipulations.
Reference:
1 . Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26:12921-42 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Basal ganglia;
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell; Subthalamus nucleus projection neuron; Globus pallidus neuron; Abstract integrate-and-fire leaky neuron;
Channel(s):
Gap Junctions:
Receptor(s): Dopaminergic Receptor;
Gene(s):
Transmitter(s): Dopamine; Gaba; Glutamate;
Simulation Environment: MATLAB;
Model Concept(s): Oscillations; Parkinson's; Action Selection/Decision Making; Sleep; Rebound firing;
Implementer(s): Humphries, Mark D [m.d.humphries at shef.ac.uk];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; Dopaminergic Receptor; Dopamine; Gaba; Glutamate;
%%% script to look at tonic rate distributions
% Mark Humphries 2/2/2006

clear all

batch_path = '../ResultsArchive/tonic/WithoutCollaterals/'; 
batch_name = 'tonic_20060407T133735_batch.mat';   % without collaterals

%batch_path = '../ResultsArchive/tonic/';
%batch_name = 'tonic_20060406T192735_batch.mat';     % with collaterals in GP/SNr

%% set paths for interactive sessions
[a host] = system('hostname');

%%% set requisite paths!
if findstr(host, 'iceberg'); % on iceberg
     fprintf('\n On ICEBERG \n');
     system_os = 'unix';
     ice_path1 = genpath('/home1/pc/pc1mdh/BG spiking model');
     ice_path2 = genpath('/home1/pc/pc1mdh/Matlab Tools');
     path(path, ice_path1);
     path(path, ice_path2);
elseif (findstr(host, 'node') | findstr(host,'ace')) % on ACE
     system_os = 'unix';
     ace_path1 = genpath('/home/mark/SpikingModel');
     path(path, ace_path1);
     fprintf('\n On ACE \n');
else
     system_os = 'xp';
     fprintf('\n On XP \n');
end

% get batch analysis lists
load([batch_path batch_name]);
[r n_models] = size(batch_analysis_list{2});

n_batches = length(batch_analysis_list);

STN_array = zeros(n_batches,2);
GPe_array = zeros(n_batches,2);
GPi_array = zeros(n_batches,2);

for loop = 1:n_batches
    load([batch_path batch_analysis_list{loop,1}]);
    STN_array(loop,1) = STN_Hz;
    STN_array(loop,2) = sem_STN;
    GPe_array(loop,1) = GPe_Hz;
    GPe_array(loop,2) = sem_GPe;
    GPi_array(loop,1) = GPi_Hz;
    GPi_array(loop,2) = sem_GPi;
end

batch_mean_STN = mean(STN_array(:,1));
batch_mean_GPe = mean(GPe_array(:,1));
batch_mean_GPi = mean(GPi_array(:,1));
batch_se_mean_STN = std(STN_array(:,1)) ./ sqrt(n_batches);
batch_se_mean_GPe = std(GPe_array(:,1)) ./ sqrt(n_batches);
batch_se_mean_GPi = std(GPi_array(:,1)) ./ sqrt(n_batches);

cl_fig
figure
hist(STN_array(:,1),10);
title('Distribution of STN means')

figure
hist(GPe_array(:,1),10);
title('Distribution of GP means')

figure
hist(GPi_array(:,1),10);
title('Distribution of SNr means')

tile

%% save data
save STN_tonic_batch.txt STN_array -ascii
save GPe_tonic_batch.txt GPe_array -ascii
save GPi_tonic_batch.txt GPi_array -ascii





Loading data, please wait...