Classic model of the Tritonia Swim CPG (Getting, 1989)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:93326
Classic model developed by Petter Getting of the 3-cell core CPG (DSI, C2, and VSI-B) mediating escape swimming in Tritonia diomedea. Cells use a hybrid integrate-and-fire scheme pioneered by Peter Getting. Each model cell is reconstructed from extensive physiological measurements to precisely mimic I-F curves, synaptic waveforms, and functional connectivity. **However, continued physiological measurements show that Getting may have inadvertently incorporated modulatory and or polysynaptic effects -- the properties of this model do *not* match physiological measurements in rested preparations.** This simulation reconstructs the Getting model as reported in: Getting (1989) 'Reconstruction of small neural networks' In Methods in Neural Modeling, 1st ed, p. 171-196. See also, an earlier version of this model reported in Getting (1983). Every attempt has been made to replicate the 1989 model as precisely as possible.
References:
1 . Getting PA (1989) Reconstruction of small neural networks. Methods in Neuronal Modeling: From Synapses to Networks., Koch C:Segev I, ed. pp.171
2 . Getting PA (1983) Mechanisms of pattern generation underlying swimming in Tritonia. II. Network reconstruction. J Neurophysiol 49:1017-35 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Tritonia;
Cell Type(s): Tritonia swim interneuron dorsal; Tritonia cerebral cell; Tritonia swim interneuron ventral;
Channel(s): I A;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Bursting; Oscillations; Invertebrate;
Implementer(s): Calin-Jageman, Robert [rcalinjageman at gsu dot edu];
Search NeuronDB for information about:  I A;
 
File not selected

<- Select file from this column.
Loading data, please wait...