Mammalian Ventricular Cell (Beeler and Reuter 1977)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:97863
This classic model of ventricular myocardial fibres was implemented by Francois Gannier. "... Four individual components of ionic current were formulated mathematically in terms of Hodgkin-Huxley type equations. The model incorporates two voltage- and time-dependent inward currents, the excitatory inward sodium current, illa, and a secondary or slow inward current, is, primarily carried by calcium ions. A time-independent outward potassium current, iK1, exhibiting inward-going rectification, and a voltage- and time-dependent outward current, i.1, primarily carried by potassium ions, are further elements of the model...."
Reference:
1 . Beeler GW, Reuter H (1977) Reconstruction of the action potential of ventricular myocardial fibres. J Physiol 268:177-210 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Cardiac ventricular cell;
Channel(s): I K; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Ion Channel Kinetics; Action Potentials;
Implementer(s): Gannier, Francois [francois.gannier at univ-tours.fr];
Search NeuronDB for information about:  I K; I Sodium; I Calcium; I Potassium;
{load_file("nrngui.hoc")}
objectvar save_window_, rvp_
objectvar scene_vector_[6]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
{pwman_place(0,0,0)}

//Begin PointProcessManager
{
load_file("pointman.hoc")
}
{
soma ocbox_ = new PointProcessManager(0)
}
{object_push(ocbox_)}
{
mt.select("NIClamp") i = mt.selected()
ms[i] = new MechanismStandard("NIClamp")
ms[i].set("del", 100, 0)
ms[i].set("dur", 1, 0)
ms[i].set("amp", 2, 0)
ms[i].set("del1", 1000, 0)
ms[i].set("n", 100, 0)
mt.select("NIClamp") i = mt.selected() maction(i)
hoc_ac_ = 0.5
sec.sec move() d1.flip_to(0)
}
{object_pop() doNotify()}
{
ocbox_ = ocbox_.v1
ocbox_.map("PointProcessManager", 450, 0, 200, 200)
}
objref ocbox_
//End PointProcessManager


//Begin Insert/Remove Mechanisms
{
load_file("inserter.hoc", "Inserter")
}
{
soma ocbox_ = new Inserter(0)
}
{object_push(ocbox_)}
{
mt.select("pas") i = mt.selected()
ms[i] = new MechanismStandard("pas")
ms[i].set("g_pas", 0.001, 0)
ms[i].set("e_pas", -70, 0)
mstate[i]= 0
mt.select("hh") i = mt.selected()
ms[i] = new MechanismStandard("hh")
ms[i].set("gnabar_hh", 0.12, 0)
ms[i].set("gkbar_hh", 0.036, 0)
ms[i].set("gl_hh", 0.0003, 0)
ms[i].set("el_hh", -54.3, 0)
mstate[i]= 0
mt.select("Cadynam") i = mt.selected()
ms[i] = new MechanismStandard("Cadynam")
mstate[i]= 1
maction(i)
mt.select("IK1") i = mt.selected()
ms[i] = new MechanismStandard("IK1")
ms[i].set("gK1_IK1", 0.00035, 0)
mstate[i]= 1
maction(i)
mt.select("INa") i = mt.selected()
ms[i] = new MechanismStandard("INa")
ms[i].set("gnabar_INa", 0.004, 0)
ms[i].set("gnac_INa", 3e-06, 0)
ms[i].set("Tauact_INa", 1, 0)
ms[i].set("Tauinactf_INa", 1, 0)
ms[i].set("Tauinacts_INa", 1, 0)
mstate[i]= 1
maction(i)
mt.select("Is") i = mt.selected()
ms[i] = new MechanismStandard("Is")
ms[i].set("gsbar_Is", 5e-05, 0)
mstate[i]= 1
maction(i)
mt.select("IKx1") i = mt.selected()
ms[i] = new MechanismStandard("IKx1")
ms[i].set("gx1_IKx1", 0.0008, 0)
ms[i].set("Tauact_IKx1", 1, 0)
mstate[i]= 1
maction(i)
mt.select("K_acc") i = mt.selected()
ms[i] = new MechanismStandard("K_acc")
ms[i].set("Vi_K_acc", 1.3668e-08, 0)
ms[i].set("ik_K_acc", 0.000445123, 0)
ms[i].set("Kneutral_K_acc", 3e-05, 0)
mstate[i]= 1
maction(i)
mt.select("Na_acc") i = mt.selected()
ms[i] = new MechanismStandard("Na_acc")
ms[i].set("Naneutral_Na_acc", 3e-05, 0)
ms[i].set("Vi_Na_acc", 1.3668e-08, 0)
mstate[i]= 1
maction(i)
}
{object_pop() doNotify()}
{
ocbox_ = ocbox_.v1
ocbox_.map("Insert/Remove Mechanisms", 300, 0, 100, 160)
}
objref ocbox_
//End Insert/Remove Mechanisms

{
xpanel("ca_ion (Globals)", 0)
cai0_ca_ion = 1e-07
xvalue("cai0_ca_ion","cai0_ca_ion", 1,"", 0, 0 )
cao0_ca_ion = 1.8
xvalue("cao0_ca_ion","cao0_ca_ion", 1,"", 0, 0 )
xpanel(800,0)
}
{
xpanel("k_ion (Globals)", 0)
ki0_k_ion = 141.59
xvalue("ki0_k_ion","ki0_k_ion", 1,"", 0, 0 )
ko0_k_ion = 5.4
xvalue("ko0_k_ion","ko0_k_ion", 1,"", 0, 0 )
xpanel(800,100)
}
{
save_window_ = new Graph(0)
save_window_.size(0,5600,-100,40)
scene_vector_[3] = save_window_
{save_window_.view(0, -100, 5600, 140, 0, 606, 1026, 203.5)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addexpr("v(.5)", 2, 1, 0.8, 0.9, 2)
}
{
xpanel("na_ion (Globals)", 0)
nai0_na_ion = 20
xvalue("nai0_na_ion","nai0_na_ion", 1,"", 0, 0 )
nao0_na_ion = 140
xvalue("nao0_na_ion","nao0_na_ion", 1,"", 0, 0 )
xpanel(800,200)
}
{
xpanel("soma(0 - 1) (Parameters)", 0)
xlabel("soma(0 - 1) (Parameters)")
xlabel("nseg = 1")
soma.L = 100
xvalue("L","soma.L", 1,"define_shape()", 0, 0 )
soma.diam = 16
xvalue("diam","soma.diam", 1,"", 0, 0 )
soma.cm = 1
xvalue("cm","soma.cm", 1,"", 0, 0 )
xpanel(650,0)
}
{
xpanel("RunControl", 0)
v_init = -75
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 5
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 1000
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 5600
xvalue("t","t", 2 )
tstop = 5600
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 26.6033
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 1
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
xcheckbox("Quiet",&stdrun_quiet,"")
realtime = 0.45
xvalue("Real Time","realtime", 0,"", 0, 1 )
xpanel(0,100)
}

{
xpanel("soma(0 - 1) (Parameters)", 0)
xlabel("soma(0 - 1) (Parameters)")
xlabel("nseg = 1")
soma.L = 100
xvalue("L","soma.L", 1,"define_shape()", 0, 0 )
soma.diam = 16
xvalue("diam","soma.diam", 1,"", 0, 0 )
soma.cm = 1
xvalue("cm","soma.cm", 1,"", 0, 0 )
soma.gK1_IK1 = 0.00035
xvalue("gK1_IK1","soma.gK1_IK1", 1,"", 0, 0 )
soma.gnabar_INa = 0.004
xvalue("gnabar_INa","soma.gnabar_INa", 1,"", 0, 0 )
soma.gnac_INa = 3e-06
xvalue("gnac_INa","soma.gnac_INa", 1,"", 0, 0 )
soma.Tauact_INa = 1
xvalue("Tauact_INa","soma.Tauact_INa", 1,"", 0, 0 )
soma.Tauinactf_INa = 1
xvalue("Tauinactf_INa","soma.Tauinactf_INa", 1,"", 0, 0 )
soma.Tauinacts_INa = 1
xvalue("Tauinacts_INa","soma.Tauinacts_INa", 1,"", 0, 0 )
soma.ena = 51.8691
xvalue("ena","soma.ena", 1,"", 0, 0 )
soma.gsbar_Is = 5e-05
xvalue("gsbar_Is","soma.gsbar_Is", 1,"", 0, 0 )
soma.gx1_IKx1 = 0.0008
xvalue("gx1_IKx1","soma.gx1_IKx1", 1,"", 0, 0 )
soma.Tauact_IKx1 = 1
xvalue("Tauact_IKx1","soma.Tauact_IKx1", 1,"", 0, 0 )
soma.ek = -87.2343
xvalue("ek","soma.ek", 1,"", 0, 0 )
xpanel(1000,0)
}
{
save_window_ = new Graph(0)
save_window_.size(4000,4600,0,1)
scene_vector_[4] = save_window_
{save_window_.view(4000, 0, 600, 1, 722, 268, 300.6, 200.8)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addvar("soma.m_INa( 0.5 )", 2, 1, 0.8, 0.9, 2)
save_window_.addvar("soma.n_INa( 0.5 )", 1, 1, 0.8, 0.9, 2)
save_window_.addvar("soma.h_INa( 0.5 )", 3, 1, 0.8, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(4000,4600,0,1)
scene_vector_[5] = save_window_
{save_window_.view(4000, 0, 600, 1, 301, 267, 300.6, 200.8)}
graphList[2].append(save_window_)
save_window_.save_name("graphList[2].")
save_window_.addvar("soma.n_Is( 0.5 )", 3, 1, 0.8, 0.9, 2)
save_window_.addvar("soma.m_IKx1( 0.5 )", 2, 1, 0.8, 0.9, 2)
save_window_.addvar("soma.m_Is( 0.5 )", 1, 1, 0.8, 0.9, 2)
}
objectvar scene_vector_[1]
{doNotify()}

Loading data, please wait...