Data-driven, HH-type model of the lateral pyloric (LP) cell in the STG (Nowotny et al. 2008)

 Download zip file 
Help downloading and running models
This model was developed using voltage clamp data and existing LP models to assemble an initial set of currents which were then adjusted by extensive fitting to a long data set of an isolated LP neuron. The main points of the work are a) automatic fitting is difficult but works when the method is carefully adjusted to the problem (and the initial guess is good enough). b) The resulting model (in this case) made reasonable predictions for manipulations not included in the original data set, e.g., blocking some of the ionic currents. c) The model is reasonably robust against changes in parameters but the different parameters vary a lot in this respect. d) The model is suitable for use in a network and has been used for this purpose (Ivanchenko et al. 2008)
1 . Nowotny T, Levi R, Selverston AI (2008) Probing the dynamics of identified neurons with a data-driven modeling approach. PLoS One 3:e2627 [PubMed]
2 . Ivanchenko MV, Thomas Nowotny , Selverston AI, Rabinovich MI (2008) Pacemaker and network mechanisms of rhythm generation: cooperation and competition. J Theor Biol 253:452-61 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hodgkin-Huxley neuron; Stomatogastric Ganglion (STG) Lateral Pyloric (LP) cell;
Channel(s): I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Simulation Environment: C or C++ program;
Model Concept(s): Activity Patterns; Bursting; Parameter Fitting; Invertebrate; Methods; Parameter sensitivity;
Implementer(s): Nowotny, Thomas [t.nowotny at];
Search NeuronDB for information about:  I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
To compile with GNU g++ type "make" (on unix-type systems).
Compilation on other systems may vary. The code depends on STL lists and 

After compilation data (almost) equivalent to figure 5A can be generated 
by typing 
"./testNT -6 1 8 NT &> NT.msg"
(omitting " of course). This gives a bunch of ascii files 
NT.-6.dat, NT.-5.dat, ... with two columns. The first column is time, the
second column is the membrane potential of the soma.
It also generates "NT.msg" containing the parameter values used.

The only difference to the figure in the paper is a very low amplitude noise 
(added in the paper but not in this code).

Loading data, please wait...