Temporal and spatial characteristics of vibrissa responses to motor commands (Simony et al. 2010)

 Download zip file 
Help downloading and running models
"A mechanistic description of the generation of whisker movements is essential for understanding the control of whisking and vibrissal active touch. We explore how facial-motoneuron spikes are translated, via an intrinsic muscle, to whisker movements. This is achieved by constructing, simulating, and analyzing a computational, biomechanical model of the motor plant, and by measuring spiking to movement transformations at small and large angles using high-precision whisker tracking in vivo. ... The model provides a direct translation from motoneuron spikes to whisker movements and can serve as a building block in closed-loop motor–sensory models of active touch."
1 . Simony E, Bagdasarian K, Herfst L, Brecht M, Ahissar E, Golomb D (2010) Temporal and spatial characteristics of vibrissa responses to motor commands. J Neurosci 30:8935-52 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Muscle model and vibrissa biomechanics;
Brain Region(s)/Organism:
Cell Type(s): Vibrissa motoneuron; Vibrissa motor plant;
Gap Junctions:
Simulation Environment: MATLAB;
Model Concept(s):
Implementer(s): Golomb, David [golomb at bgu.ac.il]; Simony, Erez [erez.simony at weizmann.ac.il];
% (c) Written By Erez Simony 2010, code for the model described in:  
% Simony, E., Bagdasarian K, Herfst L., Brecht M., Ahissar E, Golomb D. 
% Temporal and spatial characteristics of vibrissa responses to motor commands (2010). 
% Journal of Neuroscience, In press.

global vib_num  resting_angles intrinsic_muscle_set force_factor  MN_spikes_times 
% motor_plant_parameters_large_angles

% Call the motor_plant function
% Inputs: resting_angles, intrinsic_muscle_set,MN_spikes_times, force_factor
% Ouput:  time_in_msec,delta_theta,delta_xc,delta_yc 

[time_in_msec,delta_theta,delta_xc,delta_yc]=motor_plant(resting_angles, intrinsic_muscle_set, MN_spikes_times,force_factor);

% Plot whisker angle theta(degs) for "vib_num" and "vib_num-1" whiskers.
% (vib_num=1) , most posterior whisker.


% hold on
% plot(time_in_msec,delta_theta(:,vib_num-1),'k','LineWidth',3)
set(gca,'Position',[0.1759 0.1576 0.7705 0.7674],...
xlabel('Time (ms)','FontWeight','bold','FontSize',22);
ylabel('\theta (degs)','FontWeight','bold','FontSize',22);

% Plot whisker's center of mass translations Xc,Yc for "vib_num" 
% hold on
% plot(time_in_msec,1000*delta_xc(:,vib_num-1),'k','LineWidth',3)
ylabel('x (mm)','FontSize',22,'FontName','Arial');

% hold on
% plot(time_in_msec,1000*delta_yc(:,vib_num-1),'k','LineWidth',3)
xlabel('Time (ms)','FontWeight','bold','FontSize',22);
ylabel('y (mm)','FontSize',22,'FontName','Arial');

Loading data, please wait...