CA1 pyramidal neurons: effect of external electric field from power lines (Cavarretta et al. 2014)

 Download zip file 
Help downloading and running models
The paper discusses the effects induced by an electric field at power lines frequency.
1 . Cavarretta F, Carnevale NT, Tegolo D, Migliore M (2014) Effects of low frequency electric fields on synaptic integration in hippocampal CA1 pyramidal neurons: implications for power line emissions. Front Cell Neurosci 8:310 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite; Extracellular;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I h;
Gap Junctions:
Receptor(s): AMPA;
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Action Potentials; Synaptic Integration; Extracellular Fields;
Implementer(s): Carnevale, Ted [Ted.Carnevale at]; Migliore, Michele [Michele.Migliore at]; Cavarretta, Francesco [francescocavarretta at];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; I Na,t; I A; I K; I h; Glutamate;
fzap.mod *
h.mod *
kadist.mod *
kaprox.mod *
kdrca1.mod *
na3n.mod *
naxn.mod *
netstimm.mod *
xtrau.mod *
anatscale.hoc *
efheader.hoc *
geo5038804.hoc *
interpxyzu.hoc *
mosinit.hoc *
setnseg.hoc *
setpointersu.hoc *
// based on interpxyz.hoc,v 1.2 2005/09/10 23:02:15
/* Computes xyz coords of nodes in a model cell 
   whose topology & geometry are defined by pt3d data.
   Expects sections to already exist, and that the xtrau mechanism has been inserted

// original data, irregularly spaced
objref xx, yy, zz, length
// interpolated data, spaced at regular intervals
objref xint, yint, zint, range

proc grindaway() { local ii, nn, kk, xr
  forall {
//    if (ismembrane("xtra")) {
    if (ismembrane("xtrau")) {
    // get the data for the section
      nn = n3d()
      xx = new Vector(nn)
      yy = new Vector(nn)
      zz = new Vector(nn)
      length = new Vector(nn)

      for ii = 0,nn-1 {
        xx.x[ii] = x3d(ii)
        yy.x[ii] = y3d(ii)
        zz.x[ii] = z3d(ii)
        length.x[ii] = arc3d(ii)

      // to use Vector class's .interpolate() 
      // must first scale the independent variable
      // i.e. normalize length along centroid

      // initialize the destination "independent" vector
      range = new Vector(nseg+2)

      // length contains the normalized distances of the pt3d points 
      // along the centroid of the section.  These are spaced at 
      // irregular intervals.
      // range contains the normalized distances of the nodes along the 
      // centroid of the section.  These are spaced at regular intervals.
      // Ready to interpolate.

      xint = new Vector(nseg+2)
      yint = new Vector(nseg+2)
      zint = new Vector(nseg+2)
      xint.interpolate(range, length, xx)
      yint.interpolate(range, length, yy)
      zint.interpolate(range, length, zz)

//      // for each node, assign the xyz values to x_xtra, y_xtra, z_xtra
      // for each node, assign the xyz values to x_xtrau, y_xtrau, z_xtrau
//      for ii = 0, nseg+1 {
// don't bother computing coords of the 0 and 1 ends
// also avoid writing coords of the 1 end into the last internal node's coords
      for ii = 1, nseg {
        xr = range.x[ii]
        x_xtra(xr) = xint.x[ii]
        y_xtra(xr) = yint.x[ii]
        z_xtra(xr) = zint.x[ii]
        x_xtrau(xr) = xint.x[ii]
        y_xtrau(xr) = yint.x[ii]
        z_xtrau(xr) = zint.x[ii]

Loading data, please wait...