Changes of ionic concentrations during seizure transitions (Gentiletti et al. 2016)

 Download zip file 
Help downloading and running models
"... In order to investigate the respective roles of synaptic interactions and nonsynaptic mechanisms in seizure transitions, we developed a computational model of hippocampal cells, involving the extracellular space, realistic dynamics of Na+, K+, Ca2+ and Cl - ions, glial uptake and extracellular diffusion mechanisms. We show that the network behavior with fixed ionic concentrations may be quite different from the neurons’ behavior when more detailed modeling of ionic dynamics is included. In particular, we show that in the extended model strong discharge of inhibitory interneurons may result in long lasting accumulation of extracellular K+, which sustains the depolarization of the principal cells and causes their pathological discharges. ..."
1 . Gentiletti D, Suffczynski P, Gnatkovsky V, de Curtis M (2017) Changes of Ionic Concentrations During Seizure Transitions - A Modeling Study. Int J Neural Syst 27:1750004 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Extracellular; Realistic Network;
Brain Region(s)/Organism: Entorhinal cortex;
Cell Type(s):
Channel(s): Na/K pump; KCC2; I Na, leak; I K,leak; I Na,t; I Na,p; I K; I L high threshold; I_AHP; I M; I K,Ca;
Gap Junctions:
Transmitter(s): Ions;
Simulation Environment: NEURON;
Model Concept(s): Epilepsy; Reaction-diffusion; Synchronization; Simplified Models;
Implementer(s): Gentiletti, Damiano [gentiletti.damiano at];
Search NeuronDB for information about:  I Na,p; I Na,t; I L high threshold; I K; I K,leak; I M; I K,Ca; Na/K pump; I_AHP; I Na, leak; KCC2; Ions;
File not selected

<- Select file from this column.
Loading data, please wait...