Double cable myelinated axon (Layer 5 pyramidal neuron; Cohen et al 2020)

 Download zip file 
Help downloading and running models
Accession:260967
The periaxonal space in myelinated axons is conductive (~50 ohm cm). Together with a rapidly charging myelin sheath and relatively sealed paranodes, periaxonal conduction shapes the saltating voltage profiles of transaxonal (Vm), transmyelin (Vmy) and transfibre (Vmym) potentials. This model exemplifies double cable saltatory conduction across both time and space, and is the same cell (#6) as seen in Movie S4 of Cohen et al. 2020. This model version allows one to visualize and manipulate the controlling parameters of a propagating action potential. Further notes: The corresponding potentials in NEURON to those named above are v, vext (or vext[0]) and v+vext, respectively. The loaded biophysical parameters were those optimized for this cell (Cohen et al. 2020).
Reference:
1 . Cohen CCH, Popovic MA, Klooster J, Weil M, Möbius W, Nave K, Kole MHP (2020) Saltatory Conduction along Myelinated Axons Involves a Periaxonal Nanocircuit Cell
Model Information (Click on a link to find other models with that property)
Model Type: Axon; Channel/Receptor; Dendrite; Extracellular; Glia; Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Myelinated neuron;
Channel(s): Ca pump; I Calcium; I h; I K,Ca; I K,leak; I L high threshold; I T low threshold; I M; I Na,p; I Na,t; I Sodium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Active Dendrites; Axonal Action Potentials; Conductance distributions; Conductances estimation; Detailed Neuronal Models; Electrotonus; Extracellular Fields; Membrane Properties; Multiple sclerosis; Parameter sensitivity; Double cable;
Implementer(s): Cohen, Charles CH [c.cohen at gmx.com]; Kole, Maarten [m.kole at nin.knaw.nl];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I T low threshold; I K,leak; I M; I h; I K,Ca; I Sodium; I Calcium; I Potassium; Ca pump;
TITLE Voltage-gated low threshold potassium current from Kv1 subunits

COMMENT

NEURON implementation of a potassium channel from Kv1.1 subunits
Kinetical scheme: Hodgkin-Huxley m^4, no inactivation

Kinetic data taken from: Zerr et al., J.Neurosci. 18 (1998) 2842
Vhalf = -28.8 +/- 2.3 mV; k = 8.1 +/- 0.9 mV

The voltage dependency of the rate constants was approximated by:

alpha = ca * exp(-(v+cva)/cka)
beta = cb * exp(-(v+cvb)/ckb)

Parameters ca, cva, cka, cb, cvb, ckb
are defined in the CONSTANT block.

Laboratory for Neuronal Circuit Dynamics
RIKEN Brain Science Institute, Wako City, Japan
http://www.neurodynamics.brain.riken.jp

Reference: Akemann and Knoepfel, J.Neurosci. 26 (2006) 4602
Date of Implementation: April 2005
Contact: akemann@brain.riken.jp

Made threadsafe (CCohen)

ENDCOMMENT

NEURON {
	
	SUFFIX kv1
	USEION k READ ek WRITE ik
	RANGE gk, gbar, ik
	GLOBAL ninf, taun
	THREADSAFE
}

UNITS {
	
	(mV) = (millivolt)
	(mA) = (milliamp)
	(nA) = (nanoamp)
	(pA) = (picoamp)
	(S)  = (siemens)
	(nS) = (nanosiemens)
	(pS) = (picosiemens)
	(um) = (micron)
	(molar) = (1/liter)
	(mM) = (millimolar)		
}

CONSTANT {
	
	q10 = 3

	ca = 0.10 (1/ms) : 0.12889 as original
	cva = 50 (mV)
	cka = -33.90877 (mV)

	cb = 0.12889 (1/ms)
    cvb = 50 (mV)
	ckb = 7.42101 (mV)         
}

PARAMETER {
	
	v (mV)
	celsius (degC)	
	gbar = 10 (pS/um2) 
}

ASSIGNED {
 	
 	ik (mA/cm2) 
	ek (mV)
	gk  (mho/cm2)
	ninf
	taun (ms)
	alphan (1/ms)
	betan (1/ms)
	qt
}

STATE { n }

INITIAL {
	
	qt = q10^((celsius-22 (degC))/10 (degC))
	rates(v)
	n = ninf
}

BREAKPOINT {
	
	SOLVE states METHOD cnexp
    gk = gbar * n^4 
	ik = gk * (v - ek)*(1e-4)
}

DERIVATIVE states {
	
	rates(v)
	n' = (ninf-n)/taun 
}

PROCEDURE rates(v (mV)) {
	
	alphan = alphanfkt(v)
	betan = betanfkt(v)
	ninf = alphan/(alphan+betan) 
	taun = 1/(qt*(alphan + betan))       
}

FUNCTION alphanfkt(v (mV)) (1/ms) {
	
	alphanfkt = ca * exp(-(v+cva)/cka) 
}

FUNCTION betanfkt(v (mV)) (1/ms) {
	
	betanfkt = cb * exp(-(v+cvb)/ckb)
}

Loading data, please wait...