Models that contain the Modeling Application : neuroConstruct (web link to model) (Home Page)

(Some of the key features of neuroConstruct are: * neuroConstruct can import morphology files in GENESIS, NEURON, Neurolucida, SWC and MorphML format for inclusion in single cell or network models, or more abstract cells can also be built manually. * Creation of networks of conductance based neurons positioned in 3D * Complex connectivity patterns between cell groups can be specified for the networks * Simulations can be run on the NEURON or GENESIS platforms * Biophysically realistic cellular mechanisms (synapses/channel mechanisms) can be imported from native script files (*.mod or *.g) or created from templates using ChannelML * Automatic generation of code to record simulation data and visualisation/analysis of data in neuroConstruct * Recorded simulation runs can be viewed and managed through the Simulation Browser interface )
Re-display model names without descriptions
    Models   Description
1.  CA1 pyramidal neuron: signal propagation in oblique dendrites (Migliore et al 2005)
NEURON mod files from the paper: M. Migliore, M. Ferrante, GA Ascoli (2005). The model shows how the back- and forward propagation of action potentials in the oblique dendrites of CA1 neurons could be modulated by local properties such as morphology or active conductances.
2.  Cerebellar Golgi cell (Solinas et al. 2007a, 2007b)
"... Our results suggest that a complex complement of ionic mechanisms is needed to fine-tune separate aspects of the neuronal response dynamics. Simulations also suggest that the Golgi cell may exploit these mechanisms to obtain a fine regulation of timing of incoming mossy fiber responses and granular layer circuit oscillation and bursting."
3.  Dentate gyrus network model (Santhakumar et al 2005)
Mossy cell loss and mossy fiber sprouting are two characteristic consequences of repeated seizures and head trauma. However, their precise contributions to the hyperexcitable state are not well understood. Because it is difficult, and frequently impossible, to independently examine using experimental techniques whether it is the loss of mossy cells or the sprouting of mossy fibers that leads to dentate hyperexcitability, we built a biophysically realistic and anatomically representative computational model of the dentate gyrus to examine this question. The 527-cell model, containing granule, mossy, basket, and hilar cells with axonal projections to the perforant-path termination zone, showed that even weak mossy fiber sprouting (10-15% of the strong sprouting observed in the pilocarpine model of epilepsy) resulted in the spread of seizure-like activity to the adjacent model hippocampal laminae after focal stimulation of the perforant path. See reference for more and details.
4.  Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
Electrical synapses between interneurons contribute to synchronized firing and network oscillations in the brain. However, little is known about how such networks respond to excitatory synaptic input. In addition to detailed electrophysiological recordings and histological investigations of electrically coupled Golgi cells in the cerebellum, a detailed network model of these cells was created. The cell models are based on reconstructed Golgi cell morphologies and the active conductances are taken from an earlier abstract Golgi cell model (Solinas et al 2007, accession no. 112685). Our results show that gap junction coupling can sometimes be inhibitory and either promote network synchronization or trigger rapid network desynchronization depending on the synaptic input. The model is available as a neuroConstruct project and can executable scripts can be generated for the NEURON simulator.

Re-display model names without descriptions