Models that contain the Implementer : Nakano, Takashi [nakano.takashi at gmail.com]

Re-display model names without descriptions
    Models   Description
1.  A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity (Nakano et al. 2010)
A signaling pathway model of spines that express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP32), as well as AMPA receptor trafficking in the post-synaptic membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity. Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA), protein phosphatase 2A (PP2A), and the phosphorylation site at threonine 75 of DARPP-32 (Thr75) served as the major switch for inducing LTD and LTP. The present model elucidated the mechanisms involved in bidirectional regulation of corticostriatal synapses and will allow for further exploration into causes and therapies for dysfunctions such as drug addiction."
2.  A spiking neural network model of model-free reinforcement learning (Nakano et al 2015)
"Spiking neural networks provide a theoretically grounded means to test computational hypotheses on neurally plausible algorithms of reinforcement learning through numerical simulation. ... In this work, we use a spiking neural network model to approximate the free energy of a restricted Boltzmann machine and apply it to the solution of PORL (partially observable reinforcement learning) problems with high-dimensional observations. ... The way spiking neural networks handle PORL problems may provide a glimpse into the underlying laws of neural information processing which can only be discovered through such a top-down approach. "
3.  Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)
We construct an electric compartment model of the striatal medium spiny neuron with a realistic morphology and predict the calcium responses in the synaptic spines with variable timings of the glutamatergic and dopaminergic inputs and the postsynaptic action potentials. The model was validated by reproducing the responses to current inputs and could predict the electric and calcium responses to glutamatergic inputs and back-propagating action potential in the proximal and distal synaptic spines during up and down states.

Re-display model names without descriptions