Models that contain the Model Concept : Rebound firing

Re-display model names without descriptions
    Models   Description
1.  A multi-compartment model for interneurons in the dLGN (Halnes et al. 2011)
This model for dLGN interneurons is presented in two parameterizations (P1 & P2), which were fitted to current-clamp data from two different interneurons (IN1 & IN2). The model qualitatively reproduces the responses in IN1 & IN2 under 8 different experimental condition, and quantitatively reproduces the I/O-relations (#spikes elicited as a function of injected current).
2.  Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
"Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. ..."
3.  CA1 pyramidal neuron (Ferguson et al. 2014)
Izhikevich-based models of CA1 pyramidal cells, with parameters constrained based on a whole hippocampus preparation. Strongly and weakly adapting models based on the experimental data have been developed. Code produces example model output. The code will also be made available on OSB.
4.  Cerebellar nuclear neuron (Sudhakar et al., 2015)
"... In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. ..."
5.  Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010)
This is the GENESIS 2.3 implementation of a multi-compartmental deep cerebellar nucleus (DCN) neuron model with a full dendritic morphology and appropriate active conductances. We generated a good match of our simulations with DCN current clamp data we recorded in acute slices, including the heterogeneity in the rebound responses. We then examined how inhibitory and excitatory synaptic input interacted with these intrinsic conductances to control DCN firing. We found that the output spiking of the model reflected the ongoing balance of excitatory and inhibitory input rates and that changing the level of inhibition performed an additive operation. Rebound firing following strong Purkinje cell input bursts was also possible, but only if the chloride reversal potential was more negative than -70 mV to allow de-inactivation of rebound currents. Fast rebound bursts due to T-type calcium current and slow rebounds due to persistent sodium current could be differentially regulated by synaptic input, and the pattern of these rebounds was further influenced by HCN current. Our findings suggest that active properties of DCN neurons could play a crucial role for signal processing in the cerebellum.
6.  Computing with neural synchrony (Brette 2012)
"... In a heterogeneous neural population, it appears that synchrony patterns represent structure or sensory invariants in stimuli, which can then be detected by postsynaptic neurons. The required neural circuitry can spontaneously emerge with spike-timing-dependent plasticity. Using examples in different sensory modalities, I show that this allows simple neural circuits to extract relevant information from realistic sensory stimuli, for example to identify a fluctuating odor in the presence of distractors. ..."
7.  Duration-tuned neurons from the inferior colliculus of the big brown bat (Aubie et al. 2009)
dtnet is a generalized neural network simulator written in C++ with an easy to use XML description language to generate arbitrary neural networks and then run simulations covering many different parameter values. For example, you can specify ranges of parameter values for several different connection weights and then automatically run simulations over all possible parameters. Graphing ability is built in as long as the free, open-source, graphing application GLE (http://glx.sourceforge.net/) is installed. Included in the examples folder are simulation descriptions that were used to generate the results in Aubie et al. (2009). Refer to the README file for instructions on compiling and running these examples. The most recent source code can be obtained from GitHub: <a href="https://github.com/baubie/dtnet">https://github.com/baubie/dtnet</a>
8.  Febrile seizure-induced modifications to Ih (Chen et al 2001)
Modeling and experiments in the paper Chen K,Aradi I, Thom N,Eghbal-Ahmadi M, Baram TZ, and Soltesz I (2001) support the hypothesis that modified Ih currents strongly influence inhibitory inputs in CA1 cells and that the depolarizing shift in Ih activation plays a primary role in this process. Please see the paper for details. Some modeling details are available at http://www.ucihs.uci.edu/anatomy/soltesz/supp.htm Correspondance should be addressed to isoltesz@uci.edu (modeling was done by Ildiko Aradi, iaradi@uci.edu)
9.  KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
The output of the cerebellum to the motor axis of the central nervous system is orchestrated mainly by synaptic inputs and intrinsic pacemaker activity of deep cerebellar nuclear (DCN) projection neurons. Herein, we demonstrate that the soma of these cells is enriched with KV1 channels produced by mandatory multi-merization of KV1.1, 1.2 alpha andKV beta2 subunits. Being constitutively active, the K+ current (IKV1) mediated by these channels stabilizes the rate and regulates the temporal precision of self-sustained firing of these neurons. ... Through the use of multi-compartmental modelling and ... the physiological significance of the described functions for processing and communication of information from the lateral DCN to thalamic relay nuclei is established.
10.  Lamprey spinal CPG neuron (Huss et al. 2007)
This is a model of a generic locomotor network neuron in the lamprey spinal cord. The given version is assumed to correspond to an interneuron; motoneurons can also be modelled by changing the dendritic tree morphology.
11.  Low Threshold Calcium Currents in TC cells (Destexhe et al 1998)
In Destexhe, Neubig, Ulrich, and Huguenard (1998) experiments and models examine low threshold calcium current's (IT, or T-current) distribution in thalamocortical (TC) cells. Multicompartmental modeling supports the hypothesis that IT currents have a density at least several fold higher in the dendrites than the soma. The IT current contributes significantly to rebound bursts and is thought to have important network behavior consequences. See the paper for details. See also http://cns.iaf.cnrs-gif.fr Correspondance may be addressed to Alain Destexhe: Destexhe@iaf.cnrs-gif.fr
12.  Low Threshold Calcium Currents in TC cells (Destexhe et al 1998) (Brian)
R Brette's implementation in Brian 2 of Destexhe et al 1998's model. The author's original code is also available from ModelDB with accession number 279 (yes, was one of the first models in ModelDB)!
13.  Model of repetitive firing in Grueneberg ganglion olfactory neurons (Liu et al., 2012)
This model is constructed based on properties of Na+ and K+ currents observed in whole-cell patch clamp recordings of mouse Grueneberg ganglion neurons in acute slices. Two distinct Na+ conductances representing the TTX-sensitive and TTX-resistant currents and one delayed rectifier K+ currrent are included. By modulating the maximal conductances of Na+ currents, one can reproduce the regular, phasic, and sporadic patterns of repetitive firing found in the patch clamp experiments.
14.  Norns - Neural Network Studio (Visser & Van Gils 2014)
The Norns - Neural Network Studio is a software package for designing, simulation and analyzing networks of spiking neurons. It consists of three parts: 1. "Urd": a Matlab frontend with high-level functions for quickly defining networks 2. "Verdandi": an optimized C++ simulation environment which runs the simulation defined by Urd 3. "Skuld": an advanced Matlab graphical user interface (GUI) for visual inspection of simulated data.
15.  Roles of subthalamic nucleus and DBS in reinforcement conflict-based decision making (Frank 2006)
Deep brain stimulation (DBS) of the subthalamic nucleus dramatically improves the motor symptoms of Parkinson's disease, but causes cognitive side effects such as impulsivity. This model from Frank (2006) simulates the role of the subthalamic nucleus (STN) within the basal ganglia circuitry in decision making. The STN dynamically modulates network decision thresholds in proportion to decision conflict. The STN ``hold your horses'' signal adaptively allows the system more time to settle on the best choice when multiple options are valid. The model also replicates effects in Parkinson's patients on and off DBS in experiments designed to test the model (Frank et al, 2007).
16.  Spiking neuron model of the basal ganglia (Humphries et al 2006)
A spiking neuron model of the basal ganglia (BG) circuit (striatum, STN, GP, SNr). Includes: parallel anatomical channels; tonic dopamine; dopamine receptors in striatum, STN, and GP; burst-firing in STN; GABAa, AMPA, and NMDA currents; effects of synaptic location. Model demonstrates selection and switching of input signals. Replicates experimental data on changes in slow-wave (<1 Hz) and gamma-band oscillations within BG nuclei following lesions and pharmacological manipulations.
17.  Superior paraolivary nucleus neuron (Kopp-Scheinpflug et al. 2011)
This is a model of neurons in the brainstem superior paraolivary nucleus (SPN), which produce very salient offset firing during sound stimulation. Rebound offset firing is triggered by IPSPs coming from the medial nucleus of the trapezoid body (MNTB). This model shows that AP firing can emerge from inhibition through integration of large IPSPs, driven by an extremely negative chloride reversal potential, combined with a large hyperpolarization- activated non-specific cationic current (IH), with a secondary contribution from a T-type calcium conductance (ITCa). As a result, tiny gaps in sound stimuli of just 3-4ms can elicit reliable APs that signal such brief offsets.
18.  Thalamic neuron, zebra finch DLM: Integration of pallidal and cortical inputs (Goldberg et al. 2012)
This is a single-compartment model of a zebra finch thalamic relay neuron from nucleus DLM. It is used to explore the interaction between cortex-like glutamatergic input and pallidum-like GABAergic input as they control the spiking output of these neurons.
19.  Thalamocortical Relay cell under current clamp in high-conductance state (Zeldenrust et al 2018)
Mammalian thalamocortical relay (TCR) neurons switch their firing activity between a tonic spiking and a bursting regime. In a combined experimental and computational study, we investigated the features in the input signal that single spikes and bursts in the output spike train represent and how this code is influenced by the membrane voltage state of the neuron. Identical frozen Gaussian noise current traces were injected into TCR neurons in rat brain slices to adjust, fine-tune and validate a three-compartment TCR model cell (Destexhe et al. 1998, accession number 279). Three currents were added: an h-current (Destexhe et al. 1993,1996, accession number 3343), a high-threshold calcium current and a calcium- activated potassium current (Huguenard & McCormick 1994, accession number 3808). The information content carried by the various types of events in the signal as well as by the whole signal was calculated. Bursts phase-lock to and transfer information at lower frequencies than single spikes. On depolarization the neuron transits smoothly from the predominantly bursting regime to a spiking regime, in which it is more sensitive to high-frequency fluctuations. Finally, the model was used to in the more realistic “high-conductance state” (Destexhe et al. 2001, accession number 8115), while being stimulated with a Poisson input (Brette et al. 2007, Vogels & Abbott 2005, accession number 83319), where fluctuations are caused by (synaptic) conductance changes instead of current injection. Under “standard” conditions bursts are difficult to initiate, given the high degree of inactivation of the T-type calcium current. Strong and/or precisely timed inhibitory currents were able to remove this inactivation.

Re-display model names without descriptions