Models that contain the Cell : Stomatogastric ganglion (STG) pyloric dilator (PD) neuron

Re-display model names without descriptions
    Models   Description
1.  Lobster STG pyloric network model with calcium sensor (Gunay & Prinz 2010) (Prinz et al. 2004)
This pyloric network model simulator is a C/C++ program that saves 384 different calcium sensor values that are candidates for activity sensors (Gunay and Prinz, 2010). The simulator was used to scan all of the 20 million pyloric network models that were previously collected in a database (Prinz et al, 2004).
2.  Sloppy morphological tuning in identified neurons of the crustacean STG (Otopalik et al 2017)
" ...Theoretical studies suggest that morphology is tightly tuned to minimize wiring and conduction delay of synaptic events. We utilize high-resolution confocal microscopy and custom computational tools to characterize the morphologies of four neuron types in the stomatogastric ganglion (STG) of the crab Cancer borealis. Macroscopic branching patterns and fine cable properties are variable within and across neuron types. We compare these neuronal structures to synthetic minimal spanning neurite trees constrained by a wiring cost equation and find that STG neurons do not adhere to prevailing hypotheses regarding wiring optimization principles. In this highly-modulated and oscillating circuit, neuronal structures appear to be governed by a space-filling mechanism that outweighs the cost of inefficient wiring."
3.  Temperature-Dependent Pyloric Pacemaker Kernel (Caplan JS et al., 2014)
"... Here we demonstrate that biophysical models of channel noise can give rise to two kinds of recently discovered stochastic facilitation effects in a Hodgkin-Huxley-like model of auditory brainstem neurons. The first, known as slope-based stochastic resonance (SBSR), enables phasic neurons to emit action potentials that can encode the slope of inputs that vary slowly relative to key time constants in the model. The second, known as inverse stochastic resonance (ISR), occurs in tonically firing neurons when small levels of noise inhibit tonic firing and replace it with burstlike dynamics. ... our results show that possible associated computational benefits may occur due to channel noise in neurons of the auditory brainstem. ... "

Re-display model names without descriptions