Models that contain the Model Concept : Reliability

(Reliability reflects how often a repeated stimulus produces a spike train. Precision describes how close the corresponding spikes are in repeated trials.)
Re-display model names without descriptions
    Models   Description
1.  Computing with neural synchrony (Brette 2012)
"... In a heterogeneous neural population, it appears that synchrony patterns represent structure or sensory invariants in stimuli, which can then be detected by postsynaptic neurons. The required neural circuitry can spontaneously emerge with spike-timing-dependent plasticity. Using examples in different sensory modalities, I show that this allows simple neural circuits to extract relevant information from realistic sensory stimuli, for example to identify a fluctuating odor in the presence of distractors. ..."
2.  Fly lobular plate VS cell (Borst and Haag 1996, et al. 1997, et al. 1999)
In a series of papers the authors conducted experiments to develop understanding and models of fly visual system HS, CS, and VS neurons. This model recreates the VS neurons from those papers with enough success to merit approval by Borst although some discrepancies remain (see readme).
3.  Reliability of Morris-Lecar neurons with added T, h, and AHP currents (Zeldenrust et al. 2013)
We investigated the reliability of the timing of spikes in a spike train in a Morris-Lecar model with several extensions. A frozen Gaussian noise current, superimposed on a DC current, was injected. The neuron responded with spike trains that showed trial-to-trial variability. The reliability depends on the shape (steepness) of the current input versus spike frequency output curve. The model also allowed to study the contribution of three relevant ionic membrane currents to reliability: a T-type calcium current, a cation selective h-current and a calcium dependent potassium current in order to allow bursting, investigate the consequences of a more complex current-frequency relation and produce realistic firing rates.
4.  Reliability of spike timing is a general property of spiking model neurons (Brette & Guigon 2003)
"... Here we show, through simulations and theoretical considerations, that for a general class of spiking neuron models, which includes, in particular, the leaky integrate-and-fire model as well as nonlinear spiking models, aperiodic currents, contrary to periodic currents, induce reproducible responses, which are stable under noise, change in initial conditions and deterministic perturbations of the input. We provide a theoretical explanation for aperiodic currents that cross the threshold."
5.  Stimulated and physiologically induced APs: frequency and fiber diameter (Sadashivaiah et al 2018)
"... In this study, we aim to quantify the effects of stimulation frequency and fiber diameter on AP (Action Potential) interactions involving collisions and loss of excitability. We constructed a mechanistic model of a myelinated nerve fiber receiving two inputs: the underlying physiological activity at the terminal end of the fiber, and an external stimulus applied to the middle of the fiber. We define conduction reliability as the percentage of physiological APs that make it to the somatic end of the nerve fiber. At low input frequencies, conduction reliability is greater than 95% and decreases with increasing frequency due to an increase in AP interactions. Conduction reliability is less sensitive to fiber diameter and only decreases slightly with increasing fiber diameter. Finally, both the number and type of AP interactions significantly vary with both input frequencies and fiber diameter. ..."

Re-display model names without descriptions