Models that contain the Cell : Mauthner cell

(A large hindbrain cell involved in the startle reflex of fish and amphibians.)
Re-display model names without descriptions
    Models   Description
1.  Goldfish Mauthner cell (Medan et al 2017)
" ...In fish, evasion of a diving bird that breaks the water surface depends on integrating visual and auditory stimuli with very different characteristics. How do neurons process such differential sensory inputs at the dendritic level? For that we studied the Mauthner-cells (M-cells) in the goldfish startle circuit, which receive visual and auditory inputs via two separate dendrites, both accessible for in vivo recordings. We asked if electrophysiological membrane properties and dendrite morphology, studied in vivo, play a role in selective sensory processing in the M-cell. Our results show that anatomical and electrophysiological differences between the dendrites combine to produce stronger attenuation of visually evoked post synaptic potentials (PSPs) than to auditory evoked PSPs. Interestingly, our recordings showed also cross-modal dendritic interaction, as auditory evoked PSPs invade the ventral dendrite (VD) as well as the opposite, visual PSPs invade the lateral dendrite (LD). However, these interactions were asymmetrical with auditory PSPs being more prominent in the VD than visual PSPs in the LD. Modelling experiments imply that this asymmetry is caused by active conductances expressed in the proximal segments of the VD. ..."
2.  Zebrafish Mauthner-cell model (Watanabe et al 2017)
The NEURON model files encode the channel generator and firing simulator for simulating development and differentiation of the Mauthner cell (M-cell) excitability in zebrafish. The channel generator enables us to generate arbitrary Na+ and K+ channels by changing parameters of a Hodgkin-Huxley model under emulation of two-electrode voltage-clamp recordings in Xenopus oocyte system. The firing simulator simulates current-clamp recordings to generate firing patterns of the model M-cell, which are implemented with arbitrary-generated basic Na+ and K+ conductances and low-threshold K+ channels Kv7.4/KCNQ4 and sole Kv1.1 or Kv1.1 coexpressed with Kvbeta2.

Re-display model names without descriptions