Models that contain the Implementer : Kim, Hojeong [hojeong.kim03 at gmail.com]

Re-display model names without descriptions
    Models   Description
1.  A model of slow motor unit (Kim, 2017)
Cav1.3 channels in motoneuron dendrites are actively involved during normal motor activities. To investigate the effects of the activation of motoneuron Cav1.3 channels on force production, a model motor unit was built based on best-available data. The simulation results suggest that force potentiation induced by Cav1.3 channel activation is strongly modulated not only by firing history of the motoneuron but also by length variation of the muscle as well as neuromodulation inputs from the brainstem.
2.  Locational influence of dendritic PIC on input-output properties of spinal motoneurons (Kim 2017)
How does the dendritic location of calcium persistent inward current (Ca-PIC) influence dendritic excitability and firing behavior across the spinal motoneuron pool? This issue was investigated developing a model motoneuron pool where model parameters were analytically determined to reflect key motoneuron type-specific properties experimentally identified. The simulation results point out the negative relationship between the distance of Ca-PIC source from the soma and cell recruitment threshold as a basis underlying the systematic variation in input-output properties of motoneurons over the motoneuron pool.
3.  PyMUS: A Python based Motor Unit Simulator (Kim & Kim 2018)
PyMUS is a simulation software that allows for integrative investigations on the input-output processing of the motor unit system in a hierarchical manner from a single channel to the entire system behavior. Using PyMUS, a single motoneuron, muscle unit and motor unit can be separately simulated under a wide range of experimental input protocols.

Re-display model names without descriptions