Models that contain the Implementer : Komendantov, Alexander O [akomenda at]

Re-display model names without descriptions
    Models   Description
1.  Caffeine-induced electrical oscillations in Aplysia neurons (Komendantov, Kononenko 2000)
It has been found that in cultured Aplysia neurons bath applications of 40 mM cafffeine evokes oscillations of the membrane potential with about a 40 mV amplitude with a frequency of 0.2 to 0.5 Hz. The most probable mechanism of these caffeine-induced oscillations is inhibition of voltage-activated outward potassium current and, as can be seen from our mathematical modeling, slowdown of inactivation of inward sodium current. It seems likely that these oscillations have a purely membrane origin. Please see paper for results and details.
2.  Deterministic chaos in a mathematical model of a snail neuron (Komendantov and Kononenko 1996)
"Chaotic regimes in a mathematical model of pacemaker activity in the bursting neurons of a snail Helix pomatia, have been investigated. The model includes a slow-wave generating mechanism, a spike-generating mechanism, an inward Ca current, intracellular Ca ions, [Ca2+]in, their fast buffering and uptake by intracellular Ca stores, and a [Ca2+]in-inhibited Ca current. Chemosensitive voltage-activated conductance, gB*, responsible for termination of the spike burst, and chemosensitive sodium conductance, gNa*, responsible for the depolarization phase of the slow-wave, were used as control parameters. ... Time courses of the membrane potential and [Ca2+]in were employed to analyse different regimes in the model. ..."

Re-display model names without descriptions