Models that contain the Model Concept : Electrotonus

(These models study the way the electrical potential (voltage) and/or related quantities such as conductance (or its inverse resistance) varies over processes (dendrites or axons) when the process is subjected to constant current injection.)
Re-display model names without descriptions
    Models   Description
1.  2 Distinct Classes of L2 and L3 Pyramidal Neurons in Human Temporal Cortex (Deitcher et al 2017)
"There have been few quantitative characterizations of the morphological, biophysical, and cable properties of neurons in the human neocortex. We employed feature-based statistical methods on a rare data set of 60 3D reconstructed pyramidal neurons from L2 and L3 in the human temporal cortex (HL2/L3 PCs) removed after brain surgery. Of these cells, 25 neurons were also characterized physiologically. Thirty-two morphological features were analyzed (e.g., dendritic surface area, 36 333 ± 18 157 µm2; number of basal trees, 5.55 ± 1.47; dendritic diameter, 0.76 ± 0.28 µm). ... A novel descriptor for apical dendritic topology yielded 2 distinct classes, termed hereby as “slim-tufted” and “profuse-tufted” HL2/L3 PCs; the latter class tends to fire at higher rates. Thus, our morpho-electrotonic analysis shows 2 distinct classes of HL2/L3 PCs."
2.  Breakdown of accmmodation in nerve: a possible role for INAp (Hennings et al 2005)
The present modeling study suggests that persistent, low-threshold, rapidly activating sodium currents have a key role in breakdown of accommodation, and that breakdown of accommodation can be used as a tool for studying persistent sodium current under normal and pathological conditions. See paper for more and details.
3.  CA1 pyramidal neuron: Persistent Na current mediates steep synaptic amplification (Hsu et al 2018)
This paper shows that persistent sodium current critically contributes to the subthreshold nonlinear dynamics of CA1 pyramidal neurons and promotes rapidly reversible conversion between place-cell and silent-cell in the hippocampus. A simple model built with realistic axo-somatic voltage-gated sodium channels in CA1 (Carter et al., 2012; Neuron 75, 1081–1093) demonstrates that the biophysics of persistent sodium current is sufficient to explain the synaptic amplification effects. A full model built previously (Grienberger et al., 2017; Nature Neuroscience, 20(3): 417–426) with detailed morphology, ion channel types and biophysical properties of CA1 place cells naturally reproduces the steep voltage dependence of synaptic responses.
4.  Drosophila projection neuron electrotonic structure (Gouwens and Wilson 2009)
We address the issue of how electrical signals propagate in Drosophila neurons by modeling the electrotonic structure of the antennal lobe projection neurons innervating glomerulus DM1. The readme file contains instructions for running the model.
5.  Effects of synaptic location and timing on synaptic integration (Rall 1964)
Reproduces figures 5 - 8 from Rall, W. Theoretical significance of dendritic trees for neuronal input-output relations. In: Neural Theory and Modeling, ed. Reiss, R.F., Palo Alto: Stanford University Press (1964).
6.  Electrotonic transform and EPSCs for WT and Q175+/- spiny projection neurons (Goodliffe et al 2018)
This model achieves electrotonic transform and computes mean inward and outward attenuation from 0 to 500 Hz input; and randomly activates synapses along dendrites to simulate AMPAR mediated EPSCs. For electrotonic analysis, in Elec folder, the entry file is MSNelec_transform.hoc. For EPSC simulation, in Syn folder, the entry file is randomepsc.hoc. Run read_EPSCsims_mdb_alone.m next with the simulated parameter values specified to compute the mean EPSC.
7.  Hippocampal basket cell gap junction network dynamics (Saraga et al. 2006)
2 cell network of hippocampal basket cells connected by gap junctions. Paper explores how distal gap junctions and active dendrites can tune network dynamics.
8.  Rhesus Monkey Layer 3 Pyramidal Neurons: V1 vs PFC (Amatrudo, Weaver et al. 2012)
Whole-cell patch-clamp recordings and high-resolution 3D morphometric analyses of layer 3 pyramidal neurons in in vitro slices of monkey primary visual cortex (V1) and dorsolateral granular prefrontal cortex (dlPFC) revealed that neurons in these two brain areas possess highly distinctive structural and functional properties. ... Three-dimensional reconstructions of V1 and dlPFC neurons were incorporated into computational models containing Hodgkin-Huxley and AMPA- and GABAA-receptor gated channels. Morphology alone largely accounted for observed passive physiological properties, but led to AP firing rates that differed more than observed empirically, and to synaptic responses that opposed empirical results. Accordingly, modeling predicts that active channel conductances differ between V1 and dlPFC neurons. The unique features of V1 and dlPFC neurons are likely fundamental determinants of area-specific network behavior. The compact electrotonic arbor and increased excitability of V1 neurons support the rapid signal integration required for early processing of visual information. The greater connectivity and dendritic complexity of dlPFC neurons likely support higher level cognitive functions including working memory and planning.
9.  Spikelet generation and AP initiation in a L5 neocortical pyr neuron (Michalikova et al. 2017) Fig 1
The article by Michalikova et al. (2017) explores the generation of spikelets in cortical pyramidal neurons. The model cell, adapted from Hu et al. (2009), is a layer V pyramidal neuron. The cell is stimulated by fluctuating synaptic inputs and generates somatic APs and spikelets in response. The spikelets are initiated as APs at the AIS that do not activate the soma.
10.  Spikelet generation and AP initiation in a simplified pyr neuron (Michalikova et al. 2017) Fig 3
The article by Michalikova et al. (2017) explores the generation of spikelets in cortical pyramidal neurons. This package contains code for simulating the model with simplified morphology shown in Figs 3 and S2.
11.  Voltage attenuation in CA1 pyramidal neuron dendrites (Golding et al 2005)
Voltage attenuation in the apical dendritic field of CA1 pyramidal neurons is particularly strong for epsps spreading toward the soma. High cytoplasmic resistivity and high membrane (leak) conductance appear to be the major determinants of voltage attenuation over most of the apical field, but H current may be responsible for as much as half of the attenuation of distal apical epsps.

Re-display model names without descriptions