Models that contain the Implementer : Hallermann, Stefan [hallermann at]

Re-display model names without descriptions
    Models   Description
1.  State and location dependence of action potential metabolic cost (Hallermann et al., 2012)
With this model of a layer 5 pyramidal neuron the state and location dependence of the ATP usage and the metabolic efficiency of action potentials can be analyzed. Model parameters were constrained by direct subcellular recordings at dendritic, somatic and axonal compartments.
2.  Stochastic Ih and Na-channels in pyramidal neuron dendrites (Kole et al 2006)
The hyperpolarization-activated cation current (Ih) plays an important role in regulating neuronal excitability, yet its native single-channel properties in the brain are essentially unknown. Here we use variance-mean analysis to study the properties of single Ih channels in the apical dendrites of cortical layer 5 pyramidal neurons in vitro. ... In contrast to the uniformly distributed single-channel conductance, Ih channel number increases exponentially with distance, reaching densities as high as approximately 550 channels/microm2 at distal dendritic sites. These high channel densities generate significant membrane voltage noise. By incorporating a stochastic model of Ih single-channel gating into a morphologically realistic model of a layer 5 neuron, we show that this channel noise is higher in distal dendritic compartments and increased threefold with a 10-fold increased single-channel conductance (6.8 pS) but constant Ih current density. ... These data suggest that, in the face of high current densities, the small single-channel conductance of Ih is critical for maintaining the fidelity of action potential output. See paper for more and details.

Re-display model names without descriptions