Models that contain the Implementer : De Schutter, Erik [erik at oist.jp]

Re-display model names without descriptions
    Models   Description
1.  Cerebellar Golgi cell (Solinas et al. 2007a, 2007b)
"... Our results suggest that a complex complement of ionic mechanisms is needed to fine-tune separate aspects of the neuronal response dynamics. Simulations also suggest that the Golgi cell may exploit these mechanisms to obtain a fine regulation of timing of incoming mossy fiber responses and granular layer circuit oscillation and bursting."
2.  Cerebellar long-term depression (LTD) (Antunes and De Schutter 2012)
Many cellular processes involve small number of molecules and undergo stochastic fluctuations in their levels of activity. Among these processes is cerebellar long-term depression (LTD), a form of synaptic plasticity expressed as a reduction in the number of synaptic AMPA receptors (AMPARs) in Purkinje cells. Using a stochastic model of the signaling network and mechanisms of AMPAR trafficking involved in LTD, we show that the network activity in single synapses switches between two discrete stable states (LTD and non-LTD). Stochastic fluctuations affecting more intensely the level of activity of a few components of the network lead to the probabilistic induction of LTD and threshold dithering. The non-uniformly distributed stochasticity of the network allows the stable occurrence of several different macroscopic levels of depression, determining the experimentally observed sigmoidal relationship between the magnitude of depression and the concentration of the triggering signal.
3.  Model of the cerebellar granular network (Sudhakar et al 2017)
"The granular layer, which mainly consists of granule and Golgi cells, is the first stage of the cerebellar cortex and processes spatiotemporal information transmitted by mossy fiber inputs with a wide variety of firing patterns. To study its dynamics at multiple time scales in response to inputs approximating real spatiotemporal patterns, we constructed a large-scale 3D network model of the granular layer. ..."

Re-display model names without descriptions