| Models |
1. |
2 Distinct Classes of L2 and L3 Pyramidal Neurons in Human Temporal Cortex (Deitcher et al 2017)
|
2. |
A computational model of systems memory consolidation and reconsolidation (Helfer & Shultz 2019)
|
3. |
A fast model of voltage-dependent NMDA Receptors (Moradi et al. 2013)
|
4. |
A Fast Rhythmic Bursting Cell: in vivo cell modeling (Lee 2007)
|
5. |
A full-scale cortical microcircuit spiking network model (Shimoura et al 2018)
|
6. |
A microcircuit model of the frontal eye fields (Heinzle et al. 2007)
|
7. |
A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013)
|
8. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
9. |
A Neural mass computational model of the Thalamocorticothalamic circuitry (Bhattacharya et al. 2011)
|
10. |
A neural mass model for critical assessment of brain connectivity (Ursino et al 2020)
|
11. |
A neural mass model of cross frequency coupling (Chehelcheraghi et al 2017)
|
12. |
A neurocomputational model of classical conditioning phenomena (Moustafa et al. 2009)
|
13. |
A sensorimotor-spinal cord model (Hoshino et al. 2022)
|
14. |
A single column thalamocortical network model (Traub et al 2005)
|
15. |
A spiking model of cortical broadcast and competition (Shanahan 2008)
|
16. |
A spiking NN for amplification of feature-selectivity with specific connectivity (Sadeh et al 2015)
|
17. |
Accurate and fast simulation of channel noise in conductance-based model neurons (Linaro et al 2011)
|
18. |
Action potential-evoked Na+ influx are similar in axon and soma (Fleidervish et al. 2010)
|
19. |
Action potential-evoked Na+ influx similar in axon and soma (Fleidervish et al. 2010) (Python)
|
20. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460
|
21. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729
|
22. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472352327
|
23. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472421285
|
24. |
Allen Institute: Nr5a1-Cre VISp layer 2/3 473862496
|
25. |
Allen Institute: Nr5a1-Cre VISp layer 4 329322394
|
26. |
Allen Institute: Nr5a1-Cre VISp layer 4 472306544
|
27. |
Allen Institute: Nr5a1-Cre VISp layer 4 472442377
|
28. |
Allen Institute: Nr5a1-Cre VISp layer 4 472451419
|
29. |
Allen Institute: Nr5a1-Cre VISp layer 4 472915634
|
30. |
Allen Institute: Nr5a1-Cre VISp layer 4 473834758
|
31. |
Allen Institute: Nr5a1-Cre VISp layer 4 473863035
|
32. |
Allen Institute: Nr5a1-Cre VISp layer 4 473871429
|
33. |
Allen Institute: Ntsr1-Cre VISp layer 4 472430904
|
34. |
Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616
|
35. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845
|
36. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472349114
|
37. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177
|
38. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774
|
39. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421
|
40. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668
|
41. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074
|
42. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269
|
43. |
Allen Institute: Rbp4-Cre VISp layer 5 472424854
|
44. |
Allen Institute: Rbp4-Cre VISp layer 6a 473871592
|
45. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472299294
|
46. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472434498
|
47. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510
|
48. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 471087975
|
49. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 473561660
|
50. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877
|
51. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533
|
52. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107
|
53. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456
|
54. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 5 472306460
|
55. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704
|
56. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762
|
57. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845
|
58. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
|
59. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509
|
60. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578
|
61. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773
|
62. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 471086533
|
63. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676
|
64. |
Allen Institute: Sst-IRES-Cre VISp layer 4 472304539
|
65. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472299363
|
66. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472450023
|
67. |
Allen Institute: Sst-IRES-Cre VISp layer 5 473835796
|
68. |
Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759
|
69. |
Alpha rhythm in vitro visual cortex (Traub et al 2020)
|
70. |
An agent-based computational model for cortical layer formation (Bauer et al 2021)
|
71. |
AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008)
|
72. |
Apical Length Governs Computational Diversity of Layer 5 Pyramidal Neurons (Galloni et al 2020)
|
73. |
Asynchronous irregular and up/down states in excitatory and inhibitory NNs (Destexhe 2009)
|
74. |
Ave. neuron model for slow-wave sleep in cortex Tatsuki 2016 Yoshida 2018 Rasmussen 2017 (all et al)
|
75. |
Axonal Projection and Interneuron Types (Helmstaedter et al. 2008)
|
76. |
Axonal spheroids and conduction defects in Alzheimer’s disease (Yuan, Zhang, Tong, et al 2022)
|
77. |
Basal ganglia-corticothalamic (BGCT) network (Chen et al., 2014)
|
78. |
Biochemically detailed model of LTP and LTD in a cortical spine (Maki-Marttunen et al 2020)
|
79. |
Biophysically detailed model of somatosensory thalamocortical circuit (Borges et al accepted)
|
80. |
Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
|
81. |
Biophysically realistic neuron models for simulation of cortical stimulation (Aberra et al. 2018)
|
82. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
83. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
84. |
Combining modeling, deep learning for MEA neuron localization, classification (Buccino et al 2018)
|
85. |
Compartmentalization of GABAergic inhibition by dendritic spines (Chiu et al. 2013)
|
86. |
Composite spiking network/neural field model of Parkinsons (Kerr et al 2013)
|
87. |
Comprehensive models of human cortical pyramidal neurons (Eyal et al 2018)
|
88. |
Computational aspects of feedback in neural circuits (Maass et al 2006)
|
89. |
Computational Surgery (Lytton et al. 2011)
|
90. |
Computer models of corticospinal neurons replicate in vitro dynamics (Neymotin et al. 2017)
|
91. |
CONFIGR: a vision-based model for long-range figure completion (Carpenter et al. 2007)
|
92. |
Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
|
93. |
Cortical Basal Ganglia Network Model during Closed-loop DBS (Fleming et al 2020)
|
94. |
Cortical Interneuron & Pyramidal Cell Model of Cortical Spreading Depression (Stein & Harris 2022)
|
95. |
Cortical Layer 5b pyr. cell with [Na+]i mechanisms, from Hay et al 2011 (Zylbertal et al 2017)
|
96. |
Cortical network model of posttraumatic epileptogenesis (Bush et al 1999)
|
97. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
98. |
Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018)
|
99. |
Dendritic action potentials and computation in human layer 2/3 cortical neurons (Gidon et al 2020)
|
100. |
Dendritic action potentials and computation in human layer 2/3 cortical neurons (Gidon et al 2020)
|
101. |
Dendritic Discrimination of Temporal Input Sequences (Branco et al. 2010)
|
102. |
Dendritic Na+ spike initiation and backpropagation of APs in active dendrites (Nevian et al. 2007)
|
103. |
Development of orientation-selective simple cell receptive fields (Rishikesh and Venkatesh, 2003)
|
104. |
Distal inhibitory control of sensory-evoked excitation (Egger, Schmitt et al. 2015)
|
105. |
Distinct integration properties of noisy inputs in active dendritic subunits (Poleg-Polsky 2019)
|
106. |
Distributed working memory in large-scale macaque brain model (Mejias and Wang, accepted)
|
107. |
Dynamics in random NNs with multiple neuron subtypes (Pena et al 2018, Tomov et al 2014, 2016)
|
108. |
Efficient simulation environment for modeling large-scale cortical processing (Richert et al. 2011)
|
109. |
Electrodecrements in in vitro model of infantile spasms (Traub et al 2020)
|
110. |
Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014)
|
111. |
Emergence of Connectivity Motifs in Networks of Model Neurons (Vasilaki, Giugliano 2014)
|
112. |
Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011)
|
113. |
Emergence of spatiotemporal sequences in spiking neuronal networks (Spreizer et al 2019)
|
114. |
Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
|
115. |
Entrainment and divisive inhibition in a neocortical neural mass model (Papasavvas et al 2020)
|
116. |
Event-related simulation of neural processing in complex visual scenes (Mihalas et al. 2011)
|
117. |
Excitability of PFC Basal Dendrites (Acker and Antic 2009)
|
118. |
Extraction and classification of three cortical neuron types (Mensi et al. 2012)
|
119. |
Firing neocortical layer V pyramidal neuron (Reetz et al. 2014; Stadler et al. 2014)
|
120. |
Fitting predictive coding to the neurophysiological data (Spratling 2019)
|
121. |
Four cortical interneuron subtypes (Kubota et al. 2011)
|
122. |
Fronto-parietal visuospatial WM model with HH cells (Edin et al 2007)
|
123. |
Functional consequences of cortical circuit abnormalities on gamma in schizophrenia (Spencer 2009)
|
124. |
Glutamate mediated dendritic and somatic plateau potentials in cortical L5 pyr cells (Gao et al '20)
|
125. |
Hierarchical network model of perceptual decision making (Wimmer et al 2015)
|
126. |
High dimensional dynamics and low dimensional readouts in neural microcircuits (Haeusler et al 2006)
|
127. |
Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008)
|
128. |
Human Cortical L5 Pyramidal Cell (Rich et al. 2021)
|
129. |
Human L2/3 pyramidal cells with low Cm values (Eyal et al. 2016)
|
130. |
Human L5 Cortical Circuit (Guet-McCreight)
|
131. |
Human layer 2/3 cortical microcircuits in health and depression (Yao et al, 2022)
|
132. |
Huntington`s disease model (Gambazzi et al. 2010)
|
133. |
Hyperconnectivity, slow synapses in PFC mental retardation and autism model (Testa-Silva et al 2011)
|
134. |
I&F recurrent networks with current- or conductance-based synapses (Cavallari et al. 2014)
|
135. |
Impact of dendritic size and topology on pyramidal cell burst firing (van Elburg and van Ooyen 2010)
|
136. |
Information-processing in lamina-specific cortical microcircuits (Haeusler and Maass 2006)
|
137. |
Inhibition and glial-K+ interaction leads to diverse seizure transition modes (Ho & Truccolo 2016)
|
138. |
Inhibition of bAPs and Ca2+ spikes in a multi-compartment pyramidal neuron model (Wilmes et al 2016)
|
139. |
Inhibitory control by an integral feedback signal in prefrontal cortex (Miller and Wang 2006)
|
140. |
Inhibitory plasticity balances excitation and inhibition (Vogels et al. 2011)
|
141. |
Investigation of different targets in deep brain stimulation for Parkinson`s (Pirini et al. 2009)
|
142. |
Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
|
143. |
Kernel method to calculate LFPs from networks of point neurons (Telenczuk et al 2020)
|
144. |
Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
|
145. |
L5 cortical neurons with recreated synaptic inputs in vitro correlation transfer (Linaro et al 2019)
|
146. |
L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
|
147. |
L5 pyr. cell spiking control by oscillatory inhibition in distal apical dendrites (Li et al 2013)
|
148. |
L5 pyramidal neuron myelination increases analog-digital facilitation extent (Zbili & Debanne 2020)
|
149. |
L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011)
|
150. |
Large cortex model with map-based neurons (Rulkov et al 2004)
|
151. |
Large scale neocortical model for PGENESIS (Crone et al 2019)
|
152. |
Large-scale laminar model of macaque cortex (Mejias et al 2016)
|
153. |
Large-scale model of neocortical slice in vitro exhibiting persistent gamma (Tomsett et al. 2014)
|
154. |
Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)
|
155. |
Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018)
|
156. |
LFP signature of monosynaptic thalamocortical connection (Hagen et al 2017)
|
157. |
Linking STDP and Dopamine action to solve the distal reward problem (Izhikevich 2007)
|
158. |
Maximum entropy model to predict spatiotemporal spike patterns (Marre et al. 2009)
|
159. |
Mechanisms for stable, robust, and adaptive development of orientation maps (Stevens et al. 2013)
|
160. |
Memory savings through unified pre- and postsynaptic STDP (Costa et al 2015)
|
161. |
Mice Somatosensory L2/3 Pyramidal cells (Iascone et al 2020)
|
162. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
163. |
Mirror Neuron (Antunes et al 2017)
|
164. |
Models for cortical UP-DOWN states in a bistable inhibitory-stabilized network (Jercog et al 2017)
|
165. |
Modulation of cortical Up-Down state switching by astrocytes (Moyse & Berry accepted)
|
166. |
Motor cortex microcircuit simulation based on brain activity mapping (Chadderdon et al. 2014)
|
167. |
Multi-area layer-resolved spiking network model of resting-state dynamics in macaque visual cortex
|
168. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
169. |
Neocort. pyramidal cells subthreshold somatic voltage controls spike propagation (Munro Kopell 2012)
|
170. |
Network topologies for producing limited sustained activation (Kaiser and Hilgetag 2010)
|
171. |
Neural Mass Model for relationship between Brain Rhythms + Functional Connectivity (Ricci et al '21)
|
172. |
Neural mass model of the neocortex under sleep regulation (Costa et al 2016)
|
173. |
Neural mass model of the sleeping cortex (Weigenand et al 2014)
|
174. |
Neural mass model of the sleeping thalamocortical system (Schellenberger Costa et al 2016)
|
175. |
NN activity impact on neocortical pyr. neurons integrative properties in vivo (Destexhe & Pare 1999)
|
176. |
NN for proto-object based contour integration and figure-ground segregation (Hu & Niebur 2017)
|
177. |
On the structural connectivity of large-scale models of brain networks (Giacopelli et al 2021)
|
178. |
Orientation preference in L23 V1 pyramidal neurons (Park et al 2019)
|
179. |
Orientation selectivity in inhibition-dominated recurrent networks (Sadeh and Rotter, 2015)
|
180. |
Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005)
|
181. |
Perturbation sensitivity implies high noise and suggests rate coding in cortex (London et al. 2010)
|
182. |
PING, ING and CHING network models for Gamma oscillations in cortex (Susin and Destexhe accepted)
|
183. |
Pipette and membrane patch geometry effects on GABAa currents patch-clamp exps (Moroni et al. 2011)
|
184. |
Polychronization: Computation With Spikes (Izhikevich 2005)
|
185. |
Prefrontal–striatal Parkinsons comp. model of multicue category learning (Moustafa and Gluck 2011)
|
186. |
Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)
|
187. |
Prosthetic electrostimulation for information flow repair in a neocortical simulation (Kerr 2012)
|
188. |
Reducing variability in motor cortex activity by GABA (Hoshino et al. 2019)
|
189. |
Reinforcement learning of targeted movement (Chadderdon et al. 2012)
|
190. |
Response properties of neocort. neurons to temporally modulated noisy inputs (Koendgen et al. 2008)
|
191. |
Reverse-time correlation analysis for idealized orientation tuning dynamics (Kovacic et al. 2008)
|
192. |
Reward modulated STDP (Legenstein et al. 2008)
|
193. |
Rhesus Monkey Layer 3 Pyramidal Neurons: V1 vs PFC (Amatrudo, Weaver et al. 2012)
|
194. |
SCZ-associated variant effects on L5 pyr cell NN activity and delta osc. (Maki-Marttunen et al 2018)
|
195. |
Selective control of cortical axonal spikes by a slowly inactivating K+ current (Shu et al. 2007)
|
196. |
Self-organization of cortical areas in development and evolution of neocortex (Imam & Finlay 2021)
|
197. |
Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
|
198. |
Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)
|
199. |
Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014)
|
200. |
Spike propagation in dendrites with stochastic ion channels (Diba et al. 2006)
|
201. |
Spontaneous weakly correlated excitation and inhibition (Tan et al. 2013)
|
202. |
Stable propagation of synchronous spiking in cortical neural networks (Diesmann et al 1999)
|
203. |
State and location dependence of action potential metabolic cost (Hallermann et al., 2012)
|
204. |
Stochastic layer V pyramidal neuron: interpulse interval coding and noise (Singh & Levy 2017)
|
205. |
Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010)
|
206. |
Synaptic scaling balances learning in a spiking model of neocortex (Rowan & Neymotin 2013)
|
207. |
Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020)
|
208. |
Temporal integration by stochastic recurrent network (Okamoto et al. 2007)
|
209. |
Thalamo-cortical microcircuit (TCM) (AmirAli Farokhniaee and Madeleine M. Lowery 2021)
|
210. |
The origin of different spike and wave-like events (Hall et al 2017)
|
211. |
The role of glutamate in neuronal ion homeostasis: spreading depolarization (Hubel et al 2017)
|
212. |
Theoretical principles of DBS induced synaptic suppression (Farokhniaee & McIntyre 2019)
|
213. |
Theory of sequence memory in neocortex (Hawkins & Ahmad 2016)
|
214. |
Towards a biologically plausible model of LGN-V1 pathways (Lian et al 2019)
|
215. |
Two populations of excitatory neurons in the superficial retrosplenial cortex (Brennan et al 2020)
|
216. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|
217. |
V1 and AL spiking neural network for visual contrast response in mouse (Meijer et al. 2020)
|
218. |
Visual physiology of the layer 4 cortical circuit in silico (Arkhipov et al 2018)
|