| Models |
1. |
A computational model of systems memory consolidation and reconsolidation (Helfer & Shultz 2019)
|
2. |
A fast model of voltage-dependent NMDA Receptors (Moradi et al. 2013)
|
3. |
A model of neurovascular coupling and the BOLD response (Mathias et al 2017, Kenny et al 2018)
|
4. |
A model of unitary responses from A/C and PP synapses in CA3 pyramidal cells (Baker et al. 2010)
|
5. |
A model of ventral Hippocampal CA1 pyramidal neurons of Tg2576 AD mice (Spoleti et al. 2021)
|
6. |
A neurocomputational model of classical conditioning phenomena (Moustafa et al. 2009)
|
7. |
A NN with synaptic depression for testing the effects of connectivity on dynamics (Jacob et al 2019)
|
8. |
A two-stage model of dendritic integration in CA1 pyramidal neurons (Katz et al. 2009)
|
9. |
Acetylcholine Boosts Dendritic NMDA Spikes in a CA3 Pyramidal Neuron Model (Humphries et al., 2021)
|
10. |
Actions of Rotenone on ionic currents and MEPPs in Mouse Hippocampal Neurons (Huang et al 2018)
|
11. |
Active dendrites shape signaling microdomains in hippocampal neurons (Basak & Narayanan 2018)
|
12. |
Age-dependent excitability of CA1 pyramidal neurons in APPPS1 Alzheimer's model (Vitale et al 2021)
|
13. |
Amyloid-beta effects on release probability and integration at CA3-CA1 synapses (Romani et al. 2013)
|
14. |
Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008)
|
15. |
Axonal subthreshold voltage signaling along hippocampal mossy fiber (Kamiya 2022)
|
16. |
BCM-like synaptic plasticity with conductance-based models (Narayanan Johnston, 2010)
|
17. |
Behavioral time scale synaptic plasticity underlies CA1 place fields (Bittner et al. 2017)
|
18. |
CA1 network model for place cell dynamics (Turi et al 2019)
|
19. |
CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2020)
|
20. |
CA1 PV+ fast-firing hippocampal interneuron (Ferguson et al. 2013)
|
21. |
CA1 pyr cell: Inhibitory modulation of spatial selectivity+phase precession (Grienberger et al 2017)
|
22. |
CA1 pyramidal cell: reconstructed axonal arbor and failures at weak gap junctions (Vladimirov 2011)
|
23. |
CA1 pyramidal neuron (Combe et al 2018)
|
24. |
CA1 pyramidal neuron (Ferguson et al. 2014)
|
25. |
CA1 pyramidal neuron to study INaP properties and repetitive firing (Uebachs et al. 2010)
|
26. |
CA1 pyramidal neuron: action potential backpropagation (Gasparini & Migliore 2015)
|
27. |
CA1 pyramidal neuron: dendritic Ca2+ inhibition (Muellner et al. 2015)
|
28. |
CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)
|
29. |
CA1 pyramidal neuron: depolarization block (Bianchi et al. 2012)
|
30. |
CA1 pyramidal neuron: effects of R213Q and R312W Kv7.2 mutations (Miceli et al. 2013)
|
31. |
CA1 pyramidal neuron: h channel-dependent deficit of theta oscill. resonance (Marcelin et al. 2008)
|
32. |
CA1 pyramidal neuron: Ih current (Migliore et al. 2012)
|
33. |
CA1 pyramidal neuron: nonlinear a5-GABAAR controls synaptic NMDAR activation (Schulz et al 2018)
|
34. |
CA1 pyramidal neuron: Persistent Na current mediates steep synaptic amplification (Hsu et al 2018)
|
35. |
CA1 pyramidal neuron: rebound spiking (Ascoli et al.2010)
|
36. |
Ca1 pyramidal neuron: reduction model (Marasco et al. 2012)
|
37. |
CA1 pyramidal neuron: schizophrenic behavior (Migliore et al. 2011)
|
38. |
CA1 pyramidal neurons: effect of external electric field from power lines (Cavarretta et al. 2014)
|
39. |
CA1 pyramidal neurons: effects of a Kv7.2 mutation (Miceli et al. 2009)
|
40. |
CA1 pyramidal neurons: effects of Alzheimer (Culmone and Migliore 2012)
|
41. |
CA1 pyramidal neurons: effects of Kv7 (M-) channels on synaptic integration (Shah et al. 2011)
|
42. |
CA1 pyramidal: Stochastic amplification of KCa in Ca2+ microdomains (Stanley et al. 2011)
|
43. |
CA1 SOM+ (OLM) hippocampal interneuron (Ferguson et al. 2015)
|
44. |
CA1 stratum radiatum interneuron multicompartmental model (Katona et al. 2011)
|
45. |
CA3 hippocampal pyramidal neuron with voltage-clamp intrinsic conductance data (Traub et al 1991)
|
46. |
CA3 pyramidal neuron (Safiulina et al. 2010)
|
47. |
Ca3 pyramidal neuron: membrane response near rest (Hemond et al. 2009)
|
48. |
CA3 Radiatum/Lacunosum-Moleculare interneuron, Ih (Anderson et al. 2011)
|
49. |
Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013)
|
50. |
Cellular classes revealed by heartbeat-related modulation of extracellular APs (Mosher et al 2020)
|
51. |
Channel density variability among CA1 neurons (Migliore et al. 2018)
|
52. |
Chirp stimulus responses in a morphologically realistic model (Narayanan and Johnston, 2007)
|
53. |
Circadian rhythmicity shapes astrocyte morphology and neuronal function in CA1 (McCauley et al 2020)
|
54. |
Cl- homeostasis in immature hippocampal CA3 neurons (Kolbaev et al 2020)
|
55. |
Compartmental differences in cAMP signaling pathways in hippocam. CA1 pyr. cells (Luczak et al 2017)
|
56. |
Computational analysis of NN activity and spatial reach of sharp wave-ripples (Canakci et al 2017)
|
57. |
Computational modeling of gephyrin-dependent inhibitory transsynaptic signaling (Lupascu et al 2020)
|
58. |
Computational neuropharmacology of CA1 pyramidal neuron (Ferrante et al. 2008)
|
59. |
CRH modulates excitatory transmission and network physiology in hippocampus (Gunn et al. 2017)
|
60. |
Decoding movement trajectory from simulated grid cell population activity (Bush & Burgess 2019)
|
61. |
Detailed passive cable model of Dentate Gyrus Basket Cells (Norenberg et al. 2010)
|
62. |
Discrimination on behavioral time-scales mediated by reaction-diffusion in dendrites (Bhalla 2017)
|
63. |
Disentangling astroglial physiology with a realistic cell model in silico (Savtchenko et al 2018)
|
64. |
Distance-dependent synaptic strength in CA1 pyramidal neurons (Menon et al. 2013)
|
65. |
Distinct current modules shape cellular dynamics in model neurons (Alturki et al 2016)
|
66. |
Dynamical assessment of ion channels during in vivo-like states (Guet-McCreight & Skinner 2020)
|
67. |
Dynamics of ERK signaling pathways during L-LTP induction(Miningou et al accepted)
|
68. |
Early-onset epileptic encephalopathy (Miceli et al. 2015)
|
69. |
Effect of polysynaptic facilitaiton between piriform-hippocampal network stages (Trieu et al 2015)
|
70. |
Effect of the initial synaptic state on the probability to induce LTP and LTD (Migliore et al. 2015)
|
71. |
Effects of electric fields on cognitive functions (Migliore et al 2016)
|
72. |
Encoding and retrieval in a model of the hippocampal CA1 microcircuit (Cutsuridis et al. 2009)
|
73. |
Evaluation of passive component of propagating AP in mossy fiber axons (Ohura & Kamiya 2018)
|
74. |
Evolving simple models of diverse dynamics in hippocampal neuron types (Venkadesh et al 2018)
|
75. |
Factors contribution to GDP-induced [Cl-]i transients (Lombardi et al 2019)
|
76. |
Fast Spiking Basket cells (Tzilivaki et al 2019)
|
77. |
Feedforward heteroassociative network with HH dynamics (Lytton 1998)
|
78. |
Feedforward inhibition in pyramidal cells (Ferrante & Ascoli 2015)
|
79. |
Firing patterns of CA3 hippocampal neurons (Soldado-Magraner et al. 2019)
|
80. |
Fixed point attractor (Hasselmo et al 1995)
|
81. |
Fully continuous Pinsky-Rinzel model for bifurcation analysis (Atherton et al. 2016)
|
82. |
Gamma and theta rythms in biophysical models of hippocampus circuits (Kopell et al. 2011)
|
83. |
Gamma oscillations in hippocampal interneuron networks (Bartos et al 2002)
|
84. |
Gamma oscillations in hippocampal interneuron networks (Wang, Buzsaki 1996)
|
85. |
Grid cells from place cells (Castro & Aguiar, 2014)
|
86. |
Healthy and Epileptic Hippocampal Circuit (Aussel et al 2022)
|
87. |
Hierarchical anti-Hebbian network model for the formation of spatial cells in 3D (Soman et al 2019)
|
88. |
High frequency oscillations in a hippocampal computational model (Stacey et al. 2009)
|
89. |
Hippocampal CA1 microcircuit model including somatic and dendritic inhibition
|
90. |
Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)
|
91. |
Hippocampal CA1 pyramidal cell demonstrating dynamic mode switching (Berteau & Bullock 2020)
|
92. |
Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
|
93. |
Hippocampal CA3 thorny and a-thorny principal neuron models (Linaro et al in review)
|
94. |
Hippocampal Mossy Fiber bouton: presynaptic KV7 channel function (Martinello et al 2019)
|
95. |
Hippocampal spiking model for context dependent behavior (Raudies & Hasselmo 2014)
|
96. |
Hippocampus CA1 Interneuron Specific 3 (IS3) in vivo-like virtual NN simulations (Luo et al 2020)
|
97. |
Hippocampus CA1 pyramidal model with Na channel exhibiting slow inactivation (Menon et al. 2009)
|
98. |
Hippocampus temporo-septal engram shift model (Lytton 1999)
|
99. |
Homeostatic mechanisms may shape oscillatory modulations (Peterson & Voytek 2020)
|
100. |
Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)
|
101. |
Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010)
|
102. |
In silico hippocampal modeling for multi-target pharmacotherapy in schizophrenia (Sherif et al 2020)
|
103. |
Inhibition of bAPs and Ca2+ spikes in a multi-compartment pyramidal neuron model (Wilmes et al 2016)
|
104. |
Interneuron Specific 3 Interneuron Model (Guet-McCreight et al, 2016)
|
105. |
Interplay between somatic and dendritic inhibition promotes place fields (Pedrosa & Clopath 2020)
|
106. |
Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)
|
107. |
LCN-HippoModel: model of CA1 PCs deep-superficial theta firing dynamics (Navas-Olive et al 2020)
|
108. |
Library of biophysically detailed striatal projection neurons (Lindroos and Hellgren Kotaleski 2020)
|
109. |
Locus Coeruleus blocking model (Chowdhury et al. accepted)
|
110. |
Logarithmic distributions prove that intrinsic learning is Hebbian (Scheler 2017)
|
111. |
Long-Term Inactivation of Na+ Channels as a Mech of Adaptation in CA1 Pyr Cells (Upchurch et al '22)
|
112. |
Mathematical model of behavioral time scale plasticity (BTSP) of place fields (Shouval & Cone 2021)
|
113. |
Mean-field systems and small scale neural networks (Ferguson et al. 2015)
|
114. |
Mechanisms of very fast oscillations in axon networks coupled by gap junctions (Munro, Borgers 2010)
|
115. |
Membrane electrical properties of mouse CA1 pyramidal cells during strong inputs (Bianchi et al 22)
|
116. |
Model of a BDNF feedback loop (Zhang et al 2016)
|
117. |
Model of CA1 activity during working memory task (Spera et al. 2016)
|
118. |
Model of the hippocampus over the sleep-wake cycle using Hodgkin-Huxley neurons (Aussel et al 2018)
|
119. |
Modelling reduced excitability in aged CA1 neurons as a Ca-dependent process (Markaki et al. 2005)
|
120. |
Modular grid cell responses as a basis for hippocampal remapping (Monaco and Abbott 2011)
|
121. |
Modulation of septo-hippocampal theta activity by GABAA receptors (Hajos et al. 2004)
|
122. |
Multistability of clustered states in a globally inhibitory network (Chandrasekaran et al. 2009)
|
123. |
Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011)
|
124. |
Normal ripples, abnormal ripples, and fast ripples in a hippocampal model (Fink et al. 2015)
|
125. |
Odor supported place cell model and goal navigation in rodents (Kulvicius et al. 2008)
|
126. |
Opposing roles for Na+/Ca2+ exchange and Ca2+-activated K+ currents during STDP (O`Halloran 2020)
|
127. |
Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells (Lee et al. 2014)
|
128. |
Phase precession through acceleration of local theta rhythm (Castro & Aguiar 2011)
|
129. |
PKMZ synthesis and AMPAR regulation in late long-term synaptic potentiation (Helfer & Shultz 2018)
|
130. |
Place and grid cells in a loop (Rennó-Costa & Tort 2017)
|
131. |
Realistic amplifier model (Oláh et al. 2021)
|
132. |
Reduced-morphology model of CA1 pyramidal cells optimized + validated w/ HippoUnit (Tomko et al '21)
|
133. |
Region-specific atrophy in dendrites (Narayanan, Narayan, Chattarji, 2005)
|
134. |
Resonance properties through Chirp stimulus responses (Narayanan Johnston 2007, 2008)
|
135. |
Role for short term plasticity and OLM cells in containing spread of excitation (Hummos et al 2014)
|
136. |
Roles of I(A) and morphology in AP prop. in CA1 pyramidal cell dendrites (Acker and White 2007)
|
137. |
Scaffold model of mouse CA1 hippocampus. (Gandolfi et al 2022)
|
138. |
Sensory feedback in an oscillatory interference model of place cell activity (Monaco et al. 2011)
|
139. |
Sequential neuromodulation of Hebbian plasticity in reward-based navigation (Brzosko et al 2017)
|
140. |
SHOT-CA3, RO-CA1 Training, & Simulation CODE in models of hippocampal replay (Nicola & Clopath 2019)
|
141. |
Small world networks of Type I and Type II Excitable Neurons (Bogaard et al. 2009)
|
142. |
Spatial constrains of GABAergic rheobase shift (Lombardi et al., accepted)
|
143. |
Spatial coupling tunes NMDA receptor responses via Ca2+ diffusion (Iacobucci and Popescu 2019)
|
144. |
Spatial summation of excitatory and inhibitory inputs in pyramidal neurons (Hao et al. 2010)
|
145. |
Spine head calcium in a CA1 pyramidal cell model (Graham et al. 2014)
|
146. |
Spontaneous calcium oscillations in single astrocytes (Riera et al. 2011) (Manninen et al 2017)
|
147. |
STDP and BDNF in CA1 spines (Solinas et al. 2019)
|
148. |
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
|
149. |
Synaptic vesicle fusion model (Church et al 2021)
|
150. |
The APP in C-terminal domain alters CA1 neuron firing (Pousinha et al 2019)
|
151. |
The electrodiffusive neuron-extracellular-glia (edNEG) model (Sætra et al. 2021)
|
152. |
The electrodiffusive Pinsky-Rinzel (edPR) model (Sætra et al., 2020)
|
153. |
Using Strahler's analysis to reduce realistic models (Marasco et al, 2013)
|