ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/modellist/115958.

Models that contain the Region : Leech

Re-display model names without descriptions
    Models   Description
1.  Competition for AP initiation sites in a circuit controlling simple learning (Cruz et al. 2007)
"The spatial and temporal patterns of action potential initiations were studied in a behaving leech preparation to determine the basis of increased firing that accompanies sensitization, a form of non-associative learning requiring the S-interneurons. ... The S-interneurons, one in each ganglion and linked by electrical synapses with both neighbors to form a chain, are interposed between sensory and motor neurons. ... the single site with the largest initiation rate, the S-cell in the stimulated segment, suppressed initiations in adjacent ganglia. Experiments showed this was both because (1) it received the earliest, greatest input and (2) the delayed synaptic input to the adjacent S-cells coincided with the action potential refractory period. A compartmental model of the S-cell and its inputs showed that a simple, intrinsic mechanism of inexcitability after each action potential may account for suppression of impulse initiations. Thus, a non-synaptic competition between neurons alters synaptic integration in the chain. In one mode, inputs to different sites sum independently, whereas in another, synaptic input to a single site precisely specifies the overall pattern of activity."
2.  Electrically-coupled Retzius neurons (Vazquez et al. 2009)
"Dendritic electrical coupling increases the number of effective synaptic inputs onto neurons by allowing the direct spread of synaptic potentials from one neuron to another. Here we studied the summation of excitatory postsynaptic potentials (EPSPs) produced locally and arriving from the coupled neuron (transjunctional) in pairs of electrically-coupled Retzius neurons of the leech. We combined paired recordings of EPSPs, the production of artificial EPSPs (APSPs) in neuron pairs with different coupling coefficients and simulations of EPSPs produced in the coupled dendrites. ..."
3.  Half-center oscillator database of leech heart interneuron model (Doloc-Mihu & Calabrese 2011)
We have created a database (HCO-db) of instances of a half-center oscillator computational model [Hill et al., 2001] for analyzing how neuronal parameters influence network activity. We systematically explored the parameter space of about 10.4 million simulated HCO instances and corresponding isolated neuron model simulations obtained by varying a set of selected parameters (maximal conductance of intrinsic and synaptic currents) in all combinations using a brute-force approach. We classified these HCO instances by their activity characteristics into identifiable groups. We built an efficient relational database table (HCO-db) with the resulting instances characteristics.
4.  Leech Heart (HE) Motor Neuron conductances contributions to NN activity (Lamb & Calabrese 2013)
"... To explore the relationship between conductances, and in particular how they influence the activity of motor neurons in the well characterized leech heartbeat system, we developed a new multi-compartmental Hodgkin-Huxley style leech heart motor neuron model. To do so, we evolved a population of model instances, which differed in the density of specific conductances, capable of achieving specific output activity targets given an associated input pattern. ... We found that the strengths of many conductances, including those with differing dynamics, had strong partial correlations and that these relationships appeared to be linked by their influence on heart motor neuron activity. Conductances that had positive correlations opposed one another and had the opposite effects on activity metrics when perturbed whereas conductances that had negative correlations could compensate for one another and had similar effects on activity metrics. "
5.  Leech Heart Interneuron model (Sharma et al 2020)
Fractional order Leech heart interneuron model is investigated. Different firing properties are explored. In this article, we investigate the alternation of spiking and bursting phenomena of an uncoupled and coupled fractional Leech-Heart (L-H) neurons. We show that a complete graph of heterogeneous de-synchronized neurons in the backdrop of diverse memory settings (a mixture of integer and fractional exponents) can eventually lead to bursting with the formation of cluster synchronization over a certain threshold of coupling strength, however, the uncoupled L-H neurons cannot reveal bursting dynamics. Using the stability analysis in fractional domain, we demarcate the parameter space where the quiescent or steady-state emerges in uncoupled L-H neuron. Finally, a reduced-order model is introduced to capture the activities of the large network of fractional-order model neurons.
6.  Leech heart interneuron network model (Hill et al 2001, 2002)
We have created a computational model of the timing network that paces the heartbeat of the medicinal leech, Hirudo medicinalis. In the intact nerve cord, segmental oscillators are mutually entrained to the same cycle period. Although experiments have shown that the segmental oscillators are coupled by inhibitory coordinating interneurons, the underlying mechanisms of intersegmental coordination have not yet been elucidated. To help understand this coordination, we have created a simple computational model with two variants: symmetric and asymmetric. See references for more details. Biologically realistic network models with two, six, and eight cells and a tutorial are available at the links to Calabrese's web site below.
7.  Reduced leech heart interneuron (Channell et al. 2009)
"Spiking and bursting patterns of neurons are characterized by a high degree of variability. A single neuron can demonstrate endogenously various bursting patterns, changing in response to external disturbances due to synapses, or to intrinsic factors such as channel noise. We argue that in a model of the leech heart interneuron existing variations of bursting patterns are significantly enhanced by a small noise. In the absence of noise this model shows periodic bursting with fixed numbers of interspikes for most parameter values. ..."
8.  S cell network (Moss et al 2005)
Excerpts from the abstract: S cells form a chain of electrically coupled neurons that extends the length of the leech CNS and plays a critical role in sensitization during whole-body shortening. ... Serotonin ... increasedAP latency across the electrical synapse, suggesting that serotonin reduced coupling between S cells. ... Serotonin modulated instantaneous AP frequency when APs were initiated in separate S cells and in a computational model of S cell activity following mechanosensory input. Thus, serotonergic modulation of S cell electrical synapses may contribute to changes in the pattern of activity in the S cell network. See paper for more.
9.  Synaptic strengths are critical in creating the proper output phasing in a CPG (Gunay et al 2019)
"Identified neurons and the networks they compose produce stereotypical, albeit individually unique, activity across members of a species. We propose, for a motor circuit driven by a central pattern generator (CPG), that the uniqueness derives mainly from differences in synaptic strength rather than from differences in intrinsic membrane conductances. We studied a dataset of recordings from six leech (Hirudo sp.) heartbeat control networks, containing complete spiking activity patterns from inhibitory premotor interneurons, motor output spike patterns, and synaptic strength patterns to investigate the source of uniqueness. We used a conductance-based multicompartmental motor neuron model to construct a bilateral motor circuit model, and controlled it by playing recorded input spike trains from premotor interneurons to generate output inhibitory synaptic patterns similar to experimental measurements. By generating different synaptic conductance parameter sets of this circuit model, we found that relative premotor synaptic strengths impinging onto motor neurons must be different across individuals to produce animal-specific output burst phasing. Obtaining unique outputs from each individual’s circuit model did not require different intrinsic ionic conductance parameters. Furthermore, changing intrinsic conductances failed to compensate for modified synaptic strength patterns. ..."
10.  Systems-level modeling of neuronal circuits for leech swimming (Zheng et al. 2007)
"This paper describes a mathematical model of the neuronal central pattern generator (CPG) that controls the rhythmic body motion of the swimming leech. The systems approach is employed to capture the neuronal dynamics essential for generating coordinated oscillations of cell membrane potentials by a simple CPG architecture with a minimal number of parameters. ... parameter estimation leads to predictions regarding the synaptic coupling strength and intrinsic period gradient along the nerve cord, the latter of which agrees qualitatively with experimental observations."

Re-display model names without descriptions