Models that contain the Implementer : Polsky, Alon [alonpol at]

Re-display model names without descriptions
    Models   Description
1.  Dendritic Na+ spike initiation and backpropagation of APs in active dendrites (Nevian et al. 2007)
NEURON model used to create simulations shown in figure 6 of the paper. The model includes two point processes; one for dendritic spike initiation and the other for somatic action potential generation. The effect of filtering by imperfect recording electrode can be examined in somatic and dendritic locations.
2.  Distinct integration properties of noisy inputs in active dendritic subunits (Poleg-Polsky 2019)
The brain operates surprisingly well despite the noisy nature of individual neurons. The central mechanism for noise mitigation in the nervous system is thought to involve averaging over multiple noise-corrupted inputs. Subsequently, there has been considerable interest recently to identify noise structures that can be integrated linearly in a way that preserves reliable signal encoding. By analyzing realistic synaptic integration in biophysically accurate neuronal models, I report a complementary de-noising approach that is mediated by focal dendritic spikes. Dendritic spikes might seem to be unlikely candidates for noise reduction due to their miniscule integration compartments and poor averaging abilities. Nonetheless, the extra thresholding step introduced by dendritic spike generation increases neuronal tolerance for a broad category of noise structures, some of which cannot be resolved well with averaging. This property of active dendrites compensates for compartment size constraints and expands the repertoire of conditions that can be processed by neuronal populations.
3.  Effects of neural morphology on global and focal NMDA-spikes (Poleg-Polsky 2015)
This entry contains the NEURON files required to recreate figures 4-8 of the paper "Effects of Neural Morphology and Input Distribution on Synaptic Processing by Global and Focal NMDA-spikes" by Alon Poleg-Polsky
4.  Interacting synaptic conductances during, distorting, voltage clamp (Poleg-Polsky and Diamond 2011)
This simulation examines the accuracy of the voltage clamp technique in detecting the excitatory and the inhibitory components of the synaptic drive.
5.  Multiplication by NMDA receptors in Direction Selective Ganglion cells (Poleg-Polsky & Diamond 2016)
The model demonstrates how signal amplification with NMDARs depends on the synaptic environment. When direction selectivity (DS) detection is mediated by DS inhibition, NMDARs multiply other synaptic conductances. In the case of DS tuned excitation, NMDARs contribute additively.
6.  NMDA spikes in basal dendrites of L5 pyramidal neurons (Polsky et al. 2009)
"... In apical dendrites of neocortical pyramidal neurons, calcium spikes are known to contribute to burst generation, but a comparable understanding of basal dendritic mechanisms is lacking. Here we show that NMDA spikes in basal dendrites mediate both detection and generation of bursts through a postsynaptic mechanism. High-frequency inputs to basal dendrites markedly facilitated NMDA spike initiation compared with low-frequency activation or single inputs. ..."
7.  Nonlinear dendritic processing in barrel cortex spiny stellate neurons (Lavzin et al. 2012)
This is a multi-compartmental simulation of a spiny stellate neuron which is stimulated by a thalamocortical (TC) and cortico-cortical (CC) inputs. No other cells are explicitly modeled; the presynaptic network activation is represented by the number of active synapses. Preferred and non –preferred thalamic directions thus correspond to larder/smaller number of TC synapses. This simulation revealed that randomly activated synapses can cooperatively trigger global NMDA spikes, which involve participation of most of the dendritic tree. Surprisingly, we found that although the voltage profile of the cell was uniform, the calcium influx was restricted to ‘hot spots’ which correspond to synaptic clusters or large conductance synapses
8.  Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)
Simulations used in the paper. Voltage responses to current injections in different tuft locations; NMDA and calcium spike generation. Summation of multiple input distribution.

Re-display model names without descriptions