| Models |
1. |
2D model of olfactory bulb gamma oscillations (Li and Cleland 2017)
|
2. |
3D model of the olfactory bulb (Migliore et al. 2014)
|
3. |
3D olfactory bulb: operators (Migliore et al, 2015)
|
4. |
A Computational Model for the Binocular Vector Disparity Estimation (Chessa & Solari 2018)
|
5. |
A dendritic disinhibitory circuit mechanism for pathway-specific gating (Yang et al. 2016)
|
6. |
A Fast Rhythmic Bursting Cell: in vivo cell modeling (Lee 2007)
|
7. |
A large-scale model of the functioning brain (spaun) (Eliasmith et al. 2012)
|
8. |
A microcircuit model of the frontal eye fields (Heinzle et al. 2007)
|
9. |
A model of antennal lobe of bee (Chen JY et al. 2015)
|
10. |
A model of ASIC1a and synaptic cleft pH modulating wind-up in wide dynamic range neurons (Delrocq)
|
11. |
A network model of the vertebrate retina (Publio et al. 2009)
|
12. |
A network of AOB mitral cells that produces infra-slow bursting (Zylbertal et al. 2017)
|
13. |
A neurocomputational model of classical conditioning phenomena (Moustafa et al. 2009)
|
14. |
A spiking NN for amplification of feature-selectivity with specific connectivity (Sadeh et al 2015)
|
15. |
A theory of ongoing activity in V1 (Goldberg et al 2004)
|
16. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
17. |
ACh modulation in olfactory bulb and piriform cortex (de Almeida et al. 2013;Devore S, et al. 2014)
|
18. |
Action potential initiation in the olfactory mitral cell (Shen et al 1999)
|
19. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460
|
20. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729
|
21. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472352327
|
22. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472421285
|
23. |
Allen Institute: Nr5a1-Cre VISp layer 2/3 473862496
|
24. |
Allen Institute: Nr5a1-Cre VISp layer 4 329322394
|
25. |
Allen Institute: Nr5a1-Cre VISp layer 4 472306544
|
26. |
Allen Institute: Nr5a1-Cre VISp layer 4 472442377
|
27. |
Allen Institute: Nr5a1-Cre VISp layer 4 472451419
|
28. |
Allen Institute: Nr5a1-Cre VISp layer 4 472915634
|
29. |
Allen Institute: Nr5a1-Cre VISp layer 4 473834758
|
30. |
Allen Institute: Nr5a1-Cre VISp layer 4 473863035
|
31. |
Allen Institute: Nr5a1-Cre VISp layer 4 473871429
|
32. |
Allen Institute: Ntsr1-Cre VISp layer 4 472430904
|
33. |
Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616
|
34. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845
|
35. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177
|
36. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774
|
37. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421
|
38. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668
|
39. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074
|
40. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269
|
41. |
Allen Institute: Rbp4-Cre VISp layer 5 472424854
|
42. |
Allen Institute: Rbp4-Cre VISp layer 6a 473871592
|
43. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472299294
|
44. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472434498
|
45. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510
|
46. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 471087975
|
47. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 473561660
|
48. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877
|
49. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533
|
50. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107
|
51. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456
|
52. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 5 472306460
|
53. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704
|
54. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762
|
55. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845
|
56. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
|
57. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509
|
58. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578
|
59. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773
|
60. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676
|
61. |
Allen Institute: Sst-IRES-Cre VISp layer 4 472304539
|
62. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472450023
|
63. |
Allen Institute: Sst-IRES-Cre VISp layer 5 473835796
|
64. |
Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759
|
65. |
AOB mitral cell: persistent activity without feedback (Zylbertal et al., 2015)
|
66. |
AP initiation and propagation in type II cochlear ganglion cell (Hossain et al 2005)
|
67. |
Auditory nerve model for predicting performance limits (Heinz et al 2001)
|
68. |
Auditory nerve spontaneous rate histograms (Jackson and Carney 2005)
|
69. |
Biophysically Realistic Network Model of the Wild-Type and Degenerate Retina (Ly et al 2022)
|
70. |
Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
|
71. |
Burst induced synaptic plasticity in Apysia sensorimotor neurons (Phares et al 2003)
|
72. |
Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011)
|
73. |
Calyx of Held, short term plasticity (Yang Z et al. 2009)
|
74. |
Cerebellar gain and timing control model (Yamazaki & Tanaka 2007)(Yamazaki & Nagao 2012)
|
75. |
Cerebellar Model for the Optokinetic Response (Kim and Lim 2021)
|
76. |
CN bushy, stellate neurons (Rothman, Manis 2003)
|
77. |
Cochlea: inner ear models in Python (Zilany et al 2009, 2014; Holmberg M 2007)
|
78. |
Cochlear implant models (Bruce et al. 1999a, b, c, 2000)
|
79. |
Compartmental model of a mitral cell (Popovic et al. 2005)
|
80. |
Competition model of pheromone ratio detection (Zavada et al. 2011)
|
81. |
Computing with neural synchrony (Brette 2012)
|
82. |
Conductance-based model of Layer-4 in the barrel cortex (Argaman et Golomb 2017)
|
83. |
Continuum model of tubulin-driven neurite elongation (Graham et al 2006)
|
84. |
Contrast invariance by LGN synaptic depression (Banitt et al. 2007)
|
85. |
COREM: configurable retina simulator (Martínez-Cañada et al., 2016)
|
86. |
Cortex learning models (Weber at al. 2006, Weber and Triesch, 2006, Weber and Wermter 2006/7)
|
87. |
Cortical feedback alters visual response properties of dLGN relay cells (Martínez-Cañada et al 2018)
|
88. |
Cortical Layer 5b pyr. cell with [Na+]i mechanisms, from Hay et al 2011 (Zylbertal et al 2017)
|
89. |
Cortical model with reinforcement learning drives realistic virtual arm (Dura-Bernal et al 2015)
|
90. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
91. |
Default mode network model (Matsui et al 2014)
|
92. |
Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo (Smith et al 2013)
|
93. |
Dendro-dendritic synaptic circuit (Shepherd Brayton 1979)
|
94. |
Development and Binocular Matching of Orientation Selectivity in Visual Cortex (Xu et al 2020)
|
95. |
Development of orientation-selective simple cell receptive fields (Rishikesh and Venkatesh, 2003)
|
96. |
Distal inhibitory control of sensory-evoked excitation (Egger, Schmitt et al. 2015)
|
97. |
Distinct current modules shape cellular dynamics in model neurons (Alturki et al 2016)
|
98. |
Distributed representation of perceptual categories in the auditory cortex (Kim and Bao 2008)
|
99. |
Duration-tuned neurons from the inferior colliculus of vertebrates (Aubie et al. 2012)
|
100. |
Dynamical model of olfactory bulb mitral cell (Rubin, Cleland 2006)
|
101. |
Effect of polysynaptic facilitaiton between piriform-hippocampal network stages (Trieu et al 2015)
|
102. |
Effects of the membrane AHP on the Lateral Superior Olive (LSO) (Zhou & Colburn 2010)
|
103. |
Emergence of Connectivity Motifs in Networks of Model Neurons (Vasilaki, Giugliano 2014)
|
104. |
Encoding and discrimination of vowel-like sounds (Tan and Carney 2005)
|
105. |
Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
|
106. |
Ephaptic interactions in olfactory nerve (Bokil et al 2001)
|
107. |
Event-related simulation of neural processing in complex visual scenes (Mihalas et al. 2011)
|
108. |
Feature integration drives probabilistic behavior in Fly escape response (von Reyn et al 2017)
|
109. |
First-Spike-Based Visual Categorization Using Reward-Modulated STDP (Mozafari et al. 2018)
|
110. |
Fitting predictive coding to the neurophysiological data (Spratling 2019)
|
111. |
Fly lobular plate VS cell (Borst and Haag 1996, et al. 1997, et al. 1999)
|
112. |
Formation of synfire chains (Jun and Jin 2007)
|
113. |
Frog second-order vestibular neuron models (Rossert et al. 2011)
|
114. |
Functional balanced networks with synaptic plasticity (Sadeh et al, 2015)
|
115. |
Functional structure of mitral cell dendritic tuft (Djurisic et al. 2008)
|
116. |
Gamma-beta alternation in the olfactory bulb (David, Fourcaud-Trocmé et al., 2015)
|
117. |
Generating oscillatory bursts from a network of regular spiking neurons (Shao et al. 2009)
|
118. |
Goldfish Mauthner cell (Medan et al 2017)
|
119. |
Granule Cells of the Olfactory Bulb (Simoes_De_Souza et al. 2014)
|
120. |
Hebbian STDP for modelling the emergence of disparity selectivity (Chauhan et al 2018)
|
121. |
High entrainment constrains synaptic depression in a globular bushy cell (Rudnicki & Hemmert 2017)
|
122. |
Homosynaptic plasticity in the tail withdrawal circuit (TWC) of Aplysia (Baxter and Byrne 2006)
|
123. |
Honey bee receptor and antennal lobe model (Chan et al 2018)
|
124. |
Hopfield and Brody model (Hopfield, Brody 2000)
|
125. |
Human somatosensory and motor axon pair to compare thresholds (Gaines et al 2018)
|
126. |
Infraslow intrinsic rhythmogenesis in a subset of AOB projection neurons (Gorin et al 2016)
|
127. |
Inner hair cell auditory nerve synapse model (Deligeorges, Mountain 1997)
|
128. |
Integrate and fire model code for spike-based coincidence-detection (Heinz et al. 2001, others)
|
129. |
Interaural time difference detection by slowly integrating neurons (Vasilkov Tikidji-Hamburyan 2012)
|
130. |
Kenyon cells in the honeybee (Wustenberg et al 2004)
|
131. |
L4 cortical barrel NN model receiving thalamic input during whisking or touch (Gutnisky et al. 2017)
|
132. |
Laminar analysis of excitatory circuits in vibrissal motor and sensory cortex (Hooks et al. 2011)
|
133. |
Large scale model of the olfactory bulb (Yu et al., 2013)
|
134. |
Late emergence of the whisker direction selectivity map in rat barrel cortex (Kremer et al. 2011)
|
135. |
Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
|
136. |
LGMD - ON excitation to dendritic field C
|
137. |
LGMD Variability and logarithmic compression in dendrites (Jones and Gabbiani, 2012, 2012B)
|
138. |
LGMD with 3D morphology and active dendrites (Dewell & Gabbiani 2018)
|
139. |
LGNcircuit: Minimal LGN network model of temporal processing of visual input (Norheim et al. 2012)
|
140. |
Locust olfactory network with GGN and full KC population in the mushroom body (Ray et al 2020)
|
141. |
Long-term adaptation with power-law dynamics (Zilany et al. 2009)
|
142. |
Mechanisms for stable, robust, and adaptive development of orientation maps (Stevens et al. 2013)
|
143. |
Medial reticular formation of the brainstem: anatomy and dynamics (Humphries et al. 2006, 2007)
|
144. |
MEG of Somatosensory Neocortex (Jones et al. 2007)
|
145. |
Mesoscopic dynamics from AdEx recurrent networks (Zerlaut et al JCNS 2018)
|
146. |
Mesoscopic dynamics from AdEx recurrent networks (Zerlaut et al JCNS 2018) (PyNN)
|
147. |
Microsaccades and synchrony coding in the retina (Masquelier et al. 2016)
|
148. |
Mitral cell activity gating by respiration and inhibition in an olfactory bulb NN (Short et al 2016)
|
149. |
Model for concentration invariant odor coding based on primacy hypothesis (Wilson et al 2017)
|
150. |
Model of calcium oscillations in olfactory cilia (Reidl et al. 2006)
|
151. |
Model of neural responses to amplitude-modulated tones (Nelson and Carney 2004)
|
152. |
Model of repetitive firing in Grueneberg ganglion olfactory neurons (Liu et al., 2012)
|
153. |
Models analysis for auditory-nerve synapse (Zhang and Carney 2005)
|
154. |
Models for diotic and dichotic detection (Davidson et al. 2009)
|
155. |
Models of visual topographic map alignment in the Superior Colliculus (Tikidji-Hamburyan et al 2016)
|
156. |
Motion Clouds: Synthesis of random textures for motion perception (Leon et al. 2012)
|
157. |
Motor system model with reinforcement learning drives virtual arm (Dura-Bernal et al 2017)
|
158. |
Multiplication by NMDA receptors in Direction Selective Ganglion cells (Poleg-Polsky & Diamond 2016)
|
159. |
Multiscale model of olfactory receptor neuron in mouse (Dougherty 2009)
|
160. |
Multisensory integration in the superior colliculus: a neural network model (Ursino et al. 2009)
|
161. |
Muscle spindle feedback circuit (Moraud et al, 2016)
|
162. |
Na+ Signals in olfactory bulb neurons (granule cell model) (Ona-Jodar et al. 2017)
|
163. |
Network model with neocortical architecture (Anderson et al 2007,2012; Azhar et al 2012)
|
164. |
Network models of frequency modulated sweep detection (Skorheim et al. 2014)
|
165. |
Neural mass model of spindle generation in the isolated thalamus (Schellenberger Costa et al. 2016)
|
166. |
Neural mass model of the sleeping thalamocortical system (Schellenberger Costa et al 2016)
|
167. |
Neurogenesis in the olfactory bulb controlled by top-down input (Adams et al 2018)
|
168. |
NN for proto-object based contour integration and figure-ground segregation (Hu & Niebur 2017)
|
169. |
Nonlinear dendritic processing in barrel cortex spiny stellate neurons (Lavzin et al. 2012)
|
170. |
Odor supported place cell model and goal navigation in rodents (Kulvicius et al. 2008)
|
171. |
Olfactory bulb cluster formation (Migliore et al. 2010)
|
172. |
Olfactory bulb granule cell: effects of odor deprivation (Saghatelyan et al 2005)
|
173. |
Olfactory bulb juxtaglomerular models (Carey et al., 2015)
|
174. |
Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
|
175. |
Olfactory bulb mitral and granule cell column formation (Migliore et al. 2007)
|
176. |
Olfactory bulb mitral and granule cell: dendrodendritic microcircuits (Migliore and Shepherd 2008)
|
177. |
Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
|
178. |
Olfactory bulb mitral cell: synchronization by gap junctions (Migliore et al 2005)
|
179. |
Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
|
180. |
Olfactory Bulb Network (Davison et al 2003)
|
181. |
Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)
|
182. |
Olfactory bulb network: neurogenetic restructuring and odor decorrelation (Chow et al. 2012)
|
183. |
Olfactory Computations in Mitral-Granule cell circuits (Migliore & McTavish 2013)
|
184. |
Olfactory Mitral Cell (Bhalla, Bower 1993)
|
185. |
Olfactory Mitral Cell (Davison et al 2000)
|
186. |
Olfactory Mitral cell: AP initiation modes (Chen et al 2002)
|
187. |
Olfactory Mitral Cell: I-A and I-K currents (Wang et al 1996)
|
188. |
Olfactory Periglomerular Cells: I-h kinetics (Cadetti, Belluzzi 2001)
|
189. |
Olfactory receptor neuron model (Dougherty et al 2005)
|
190. |
Online learning model of olfactory bulb external plexiform layer network (Imam & Cleland 2020)
|
191. |
Opponent-channel model of the cortical representation of auditory space (Briley et al., 2012)
|
192. |
Orientation preference in L23 V1 pyramidal neurons (Park et al 2019)
|
193. |
Orientation selectivity in inhibition-dominated recurrent networks (Sadeh and Rotter, 2015)
|
194. |
Oscillating neurons in the cochlear nucleus (Bahmer Langner 2006a, b, and 2007)
|
195. |
Oscillation and coding in a proposed NN model of insect olfaction (Horcholle-Bossavit et al. 2007)
|
196. |
Parallel cortical inhibition processing enables context-dependent behavior (Kuchibhotla et al. 2016)
|
197. |
Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)
|
198. |
Plasticity forms non-overlapping adjacent ON and OFF RFs in cortical neurons (Sollini et al 2018)
|
199. |
Point process framework for modeling electrical stimulation of auditory nerve (Goldwyn et al. 2012)
|
200. |
Predicting formant-frequency discrimination in noise (Tan and Carney 2006)
|
201. |
Pyramidal neuron conductances state and STDP (Delgado et al. 2010)
|
202. |
Reciprocal regulation of rod and cone synapse by NO (Kourennyi et al 2004)
|
203. |
Reichardt Model for Motion Detection in the Fly Visual System (Tuthill et al, 2011)
|
204. |
Relative spike time coding and STDP-based orientation selectivity in V1 (Masquelier 2012)
|
205. |
Response properties of an integrate and fire model (Zhang and Carney 2005)
|
206. |
Reverse-time correlation analysis for idealized orientation tuning dynamics (Kovacic et al. 2008)
|
207. |
Revised opponent-channel model of auditory space cortical representation (Briley & Summerfield 2013)
|
208. |
Rhesus Monkey Layer 3 Pyramidal Neurons: V1 vs PFC (Amatrudo, Weaver et al. 2012)
|
209. |
Role of Ih in firing patterns of cold thermoreceptors (Orio et al., 2012)
|
210. |
Scaling self-organizing maps to model large cortical networks (Bednar et al 2004)
|
211. |
Self-organized olfactory pattern recognition (Kaplan & Lansner 2014)
|
212. |
Sensorimotor cortex reinforcement learning of 2-joint virtual arm reaching (Neymotin et al. 2013)
|
213. |
Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
|
214. |
Short term plasticity of synapses onto V1 layer 2/3 pyramidal neuron (Varela et al 1997)
|
215. |
Signal integration in LGN cells (Briska et al 2003)
|
216. |
Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014)
|
217. |
Simulating ion channel noise in an auditory brainstem neuron model (Schmerl & McDonnell 2013)
|
218. |
Simulations of oscillations in piriform cortex (Wilson & Bower 1992)
|
219. |
Single compartment Dorsal Lateral Medium Spiny Neuron w/ NMDA and AMPA (Biddell and Johnson 2013)
|
220. |
Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)
|
221. |
Spike frequency adaptation in the LGMD (Peron and Gabbiani 2009)
|
222. |
Spinal Dorsal Horn Network Model (Medlock et al 2022)
|
223. |
Spontaneous weakly correlated excitation and inhibition (Tan et al. 2013)
|
224. |
Stochastic model of the olfactory cilium transduction and adaptation (Antunes et al 2014)
|
225. |
Studies of stimulus parameters for seizure disruption using NN simulations (Anderson et al. 2007)
|
226. |
Surround Suppression in V1 via Withdraw of Balanced Local Excitation in V1 (Shushruth 2012)
|
227. |
Synaptic transmission at the calyx of Held (Graham et al 2001)
|
228. |
Synchrony by synapse location (McTavish et al. 2012)
|
229. |
Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020)
|
230. |
Temperature-Dependent Pyloric Pacemaker Kernel (Caplan JS et al., 2014)
|
231. |
Temporal decorrelation by intrinsic cellular dynamics (Wang et al 2003)
|
232. |
Theoretical reconstrucion of field potentials and dendrodendritic synaptic...(Rall & Shepherd 1968)
|
233. |
Touch Sensory Cells (T Cells) of the Leech (Cataldo et al. 2004) (Scuri et al. 2007)
|
234. |
Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006)
|
235. |
Two Models for synaptic input statistics for the MSO neuron model (Jercog et al. 2010)
|
236. |
Understanding odor information segregation in the olfactory bulb by MC/TCs (Polese et al. 2014)
|
237. |
V1 and AL spiking neural network for visual contrast response in mouse (Meijer et al. 2020)
|
238. |
Vibration-sensitive Honeybee interneurons (Ai et al 2017)
|
239. |
Visual Cortex Neurons: Dendritic computations (Archie, Mel 2000)
|