| Models |
1. |
3D model of the olfactory bulb (Migliore et al. 2014)
|
2. |
3D olfactory bulb: operators (Migliore et al, 2015)
|
3. |
A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)
|
4. |
A biophysical model of vestibular ganglion neurons (Hight & Kalluri 2016, Ventura & Kalluri 2018)
|
5. |
A computational model of a small DRG neuron to explore pain (Verma et al. 2019, 2020)
|
6. |
A detailed Purkinje cell model (Masoli et al 2015)
|
7. |
A dynamic model of the canine ventricular myocyte (Hund, Rudy 2004)
|
8. |
A Fast Rhythmic Bursting Cell: in vivo cell modeling (Lee 2007)
|
9. |
A focal seizure model with ion concentration changes (Gentiletti et al., 2022)
|
10. |
A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013)
|
11. |
A model for a nociceptor terminal and terminal tree (Barkai et al., 2020)
|
12. |
A model for interaural time difference sensitivity in the medial superior olive (Zhou et al 2005)
|
13. |
A model for recurrent spreading depolarizations (Conte et al. 2017)
|
14. |
A model of ASIC1a and synaptic cleft pH modulating wind-up in wide dynamic range neurons (Delrocq)
|
15. |
A model of closed-loop motor unit including muscle spindle feedback (Kim, 2020)
|
16. |
A Model of Multiple Spike Initiation Zones in the Leech C-interneuron (Crisp 2009)
|
17. |
A model of slow motor unit (Kim, 2017)
|
18. |
A model of the T-junction of a C-fiber sensory neuron (Sundt et al. 2015)
|
19. |
A model of ventral Hippocampal CA1 pyramidal neurons of Tg2576 AD mice (Spoleti et al. 2021)
|
20. |
A Moth MGC Model-A HH network with quantitative rate reduction (Buckley & Nowotny 2011)
|
21. |
A multi-compartment model for interneurons in the dLGN (Halnes et al. 2011)
|
22. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
23. |
A multiphysics neuron model for cellular volume dynamics (Lee et al. 2011)
|
24. |
A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (CellML)
|
25. |
A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (SBML)
|
26. |
A network model of tail withdrawal in Aplysia (White et al 1993)
|
27. |
A network of AOB mitral cells that produces infra-slow bursting (Zylbertal et al. 2017)
|
28. |
A neuronal circuit simulator for non Monte Carlo analysis of neuronal noise (Kilinc & Demir 2018)
|
29. |
A set of reduced models of layer 5 pyramidal neurons (Bahl et al. 2012)
|
30. |
A simplified cerebellar Purkinje neuron (the PPR model) (Brown et al. 2011)
|
31. |
A simulation method for the firing sequences of motor units (Jiang et al 2006)
|
32. |
A single column thalamocortical network model (Traub et al 2005)
|
33. |
A single kinetic model for all human voltage-gated sodium channels (Balbi et al, 2017)
|
34. |
A synapse model for developing somatosensory cortex (Manninen et al 2020)
|
35. |
A threshold equation for action potential initiation (Platkiewicz & Brette 2010)
|
36. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
37. |
A two-stage model of dendritic integration in CA1 pyramidal neurons (Katz et al. 2009)
|
38. |
A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
|
39. |
Accurate and fast simulation of channel noise in conductance-based model neurons (Linaro et al 2011)
|
40. |
Action Potential initiation and backpropagation in Neocortical L5 Pyramidal Neuron (Hu et al. 2009)
|
41. |
Action potential initiation in the olfactory mitral cell (Shen et al 1999)
|
42. |
Action potential of striated muscle fiber (Adrian et al 1970)
|
43. |
Action potential reconstitution from measured current waveforms (Alle et al. 2009)
|
44. |
Action potential-evoked Na+ influx are similar in axon and soma (Fleidervish et al. 2010)
|
45. |
Action potential-evoked Na+ influx similar in axon and soma (Fleidervish et al. 2010) (Python)
|
46. |
Actions of Rotenone on ionic currents and MEPPs in Mouse Hippocampal Neurons (Huang et al 2018)
|
47. |
Active dendrites and spike propagation in a hippocampal interneuron (Saraga et al 2003)
|
48. |
Active dendritic action potential propagation (Casale & McCormick 2011)
|
49. |
Active dendritic integration in robust and precise grid cell firing (Schmidt-Hieber et al 2017)
|
50. |
Activity dependent changes in dendritic spine density and spine structure (Crook et al. 2007)
|
51. |
Activity dependent changes in motoneurones (Dai Y et al 2002, Gardiner et al 2002)
|
52. |
Activity dependent conductances in a neuron model (Liu et al. 1998)
|
53. |
Activity patterns in a subthalamopallidal network of the basal ganglia model (Terman et al 2002)
|
54. |
Activity-dependent broadening of axonal spikes by inactivating K channels (Zheng & Kamiya 2023)
|
55. |
Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005)
|
56. |
AIS model of L5 cortical pyramidal neuron (Filipis et al., 2023)
|
57. |
Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015)
|
58. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460
|
59. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729
|
60. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472352327
|
61. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472421285
|
62. |
Allen Institute: Nr5a1-Cre VISp layer 2/3 473862496
|
63. |
Allen Institute: Nr5a1-Cre VISp layer 4 329322394
|
64. |
Allen Institute: Nr5a1-Cre VISp layer 4 472306544
|
65. |
Allen Institute: Nr5a1-Cre VISp layer 4 472442377
|
66. |
Allen Institute: Nr5a1-Cre VISp layer 4 472451419
|
67. |
Allen Institute: Nr5a1-Cre VISp layer 4 472915634
|
68. |
Allen Institute: Nr5a1-Cre VISp layer 4 473834758
|
69. |
Allen Institute: Nr5a1-Cre VISp layer 4 473863035
|
70. |
Allen Institute: Nr5a1-Cre VISp layer 4 473871429
|
71. |
Allen Institute: Ntsr1-Cre VISp layer 4 472430904
|
72. |
Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616
|
73. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845
|
74. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472349114
|
75. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177
|
76. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774
|
77. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421
|
78. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668
|
79. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074
|
80. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269
|
81. |
Allen Institute: Rbp4-Cre VISp layer 5 472424854
|
82. |
Allen Institute: Rbp4-Cre VISp layer 6a 473871592
|
83. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472299294
|
84. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472434498
|
85. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510
|
86. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 471087975
|
87. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 473561660
|
88. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877
|
89. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533
|
90. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107
|
91. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456
|
92. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 5 472306460
|
93. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704
|
94. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762
|
95. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845
|
96. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
|
97. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509
|
98. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578
|
99. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773
|
100. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 471086533
|
101. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676
|
102. |
Allen Institute: Sst-IRES-Cre VISp layer 4 472304539
|
103. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472299363
|
104. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472450023
|
105. |
Allen Institute: Sst-IRES-Cre VISp layer 5 473835796
|
106. |
Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759
|
107. |
Alpha rhythm in vitro visual cortex (Traub et al 2020)
|
108. |
Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)
|
109. |
Amyloid-beta effects on release probability and integration at CA3-CA1 synapses (Romani et al. 2013)
|
110. |
An allosteric kinetics of NMDARs in STDP (Urakubo et al. 2008)
|
111. |
An ion-based model for swelling of neurons and astrocytes (Hubel & Ullah 2016)
|
112. |
Anoxic depolarization, recovery: effect of brain regions and extracellular space (Hubel et al. 2016)
|
113. |
AOB mitral cell: persistent activity without feedback (Zylbertal et al., 2015)
|
114. |
AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008)
|
115. |
AP initiation and propagation in type II cochlear ganglion cell (Hossain et al 2005)
|
116. |
AP shape and parameter constraints in optimization of compartment models (Weaver and Wearne 2006)
|
117. |
Apical Length Governs Computational Diversity of Layer 5 Pyramidal Neurons (Galloni et al 2020)
|
118. |
Ave. neuron model for slow-wave sleep in cortex Tatsuki 2016 Yoshida 2018 Rasmussen 2017 (all et al)
|
119. |
Axon-somatic back-propagation in a detailed model of cat spinal motoneuron (Balbi et al, 2015)
|
120. |
Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008)
|
121. |
Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008)
|
122. |
Axonal Projection and Interneuron Types (Helmstaedter et al. 2008)
|
123. |
Axonal subthreshold voltage signaling along hippocampal mossy fiber (Kamiya 2022)
|
124. |
Basal ganglia-thalamic network model for deep brain stimulation (So et al. 2012)
|
125. |
BCM-like synaptic plasticity with conductance-based models (Narayanan Johnston, 2010)
|
126. |
BDNF morphological contributions to AP enhancement (Galati et al. 2016)
|
127. |
Biophysical and phenomenological models of spike-timing dependent plasticity (Badoual et al. 2006)
|
128. |
Biophysically detailed model of the mouse sino-atrial node cell (Kharche et al. 2011)
|
129. |
Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
|
130. |
Boundary effects influence velocity in transverse propagation of cardiac APs (Sperelakis et al 2005)
|
131. |
Breakdown of accmmodation in nerve: a possible role for INAp (Hennings et al 2005)
|
132. |
Burst and tonic firing behaviour in subfornical organ (SFO) neurons (Medlock et al 2018)
|
133. |
Burst induced synaptic plasticity in Apysia sensorimotor neurons (Phares et al 2003)
|
134. |
Bursting activity of neuron R15 in Aplysia (Canavier et al 1991, Butera et al 1995)
|
135. |
Bursting and oscillations in RD1 Retina driven by AII Amacrine Neuron (Choi et al. 2014)
|
136. |
Bursting in dopamine neurons (Li YX et al 1996)
|
137. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
138. |
CA1 network model for place cell dynamics (Turi et al 2019)
|
139. |
CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2020)
|
140. |
CA1 oriens alveus interneurons: signaling properties (Minneci et al. 2007)
|
141. |
CA1 pyramidal cell: I_NaP and I_M contributions to somatic bursting (Golomb et al 2006)
|
142. |
CA1 pyramidal cell: reconstructed axonal arbor and failures at weak gap junctions (Vladimirov 2011)
|
143. |
CA1 pyramidal neuron (Combe et al 2018)
|
144. |
CA1 pyramidal neuron (Migliore et al 1999)
|
145. |
CA1 pyramidal neuron synaptic integration (Bloss et al. 2016)
|
146. |
CA1 pyramidal neuron synaptic integration (Li and Ascoli 2006, 2008)
|
147. |
CA1 pyramidal neuron to study INaP properties and repetitive firing (Uebachs et al. 2010)
|
148. |
CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003)
|
149. |
CA1 pyramidal neuron: action potential backpropagation (Gasparini & Migliore 2015)
|
150. |
CA1 pyramidal neuron: calculation of MRI signals (Cassara et al. 2008)
|
151. |
CA1 pyramidal neuron: conditional boosting of dendritic APs (Watanabe et al 2002)
|
152. |
CA1 pyramidal neuron: dendritic Ca2+ inhibition (Muellner et al. 2015)
|
153. |
CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)
|
154. |
CA1 pyramidal neuron: dendritic spike initiation (Gasparini et al 2004)
|
155. |
CA1 pyramidal neuron: depolarization block (Bianchi et al. 2012)
|
156. |
CA1 pyramidal neuron: effects of Ih on distal inputs (Migliore et al 2004)
|
157. |
CA1 pyramidal neuron: effects of Lamotrigine on dendritic excitability (Poolos et al 2002)
|
158. |
CA1 pyramidal neuron: effects of R213Q and R312W Kv7.2 mutations (Miceli et al. 2013)
|
159. |
CA1 pyramidal neuron: functional significance of axonal Kv7 channels (Shah et al. 2008)
|
160. |
CA1 pyramidal neuron: Ih current (Migliore et al. 2012)
|
161. |
CA1 pyramidal neuron: integration of subthreshold inputs from PP and SC (Migliore 2003)
|
162. |
CA1 pyramidal neuron: Persistent Na current mediates steep synaptic amplification (Hsu et al 2018)
|
163. |
CA1 pyramidal neuron: rebound spiking (Ascoli et al.2010)
|
164. |
Ca1 pyramidal neuron: reduction model (Marasco et al. 2012)
|
165. |
CA1 pyramidal neuron: schizophrenic behavior (Migliore et al. 2011)
|
166. |
CA1 pyramidal neuron: signal propagation in oblique dendrites (Migliore et al 2005)
|
167. |
CA1 Pyramidal Neuron: slow Na+ inactivation (Migliore 1996)
|
168. |
CA1 pyramidal neuron: synaptically-induced bAP predicts synapse location (Sterratt et al. 2012)
|
169. |
CA1 pyramidal neurons: binding properties and the magical number 7 (Migliore et al. 2008)
|
170. |
CA1 pyramidal neurons: effect of external electric field from power lines (Cavarretta et al. 2014)
|
171. |
CA1 pyramidal neurons: effects of a Kv7.2 mutation (Miceli et al. 2009)
|
172. |
CA1 pyramidal neurons: effects of Alzheimer (Culmone and Migliore 2012)
|
173. |
CA1 pyramidal neurons: effects of Kv7 (M-) channels on synaptic integration (Shah et al. 2011)
|
174. |
CA1 stratum radiatum interneuron multicompartmental model (Katona et al. 2011)
|
175. |
CA3 hippocampal pyramidal neuron with voltage-clamp intrinsic conductance data (Traub et al 1991)
|
176. |
CA3 pyramidal cell: rhythmogenesis in a reduced Traub model (Pinsky, Rinzel 1994)
|
177. |
CA3 pyramidal neuron (Lazarewicz et al 2002)
|
178. |
CA3 Pyramidal Neuron (Migliore et al 1995)
|
179. |
CA3 pyramidal neuron (Safiulina et al. 2010)
|
180. |
CA3 pyramidal neuron: firing properties (Hemond et al. 2008)
|
181. |
CA3 pyramidal neurons: Kv1.2 mediates modulation of cortical inputs (Hyun et al., 2015)
|
182. |
Caffeine-induced electrical oscillations in Aplysia neurons (Komendantov, Kononenko 2000)
|
183. |
Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011)
|
184. |
Calcium influx during striatal upstates (Evans et al. 2013)
|
185. |
Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)
|
186. |
Calcium spikes in basal dendrites (Kampa and Stuart 2006)
|
187. |
Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013)
|
188. |
Calculating the consequences of left-shifted Nav channel activity in sick cells (Joos et al 2018)
|
189. |
Carbon nanotubes as electrical interfaces to neurons (Giugliano et al. 2008)
|
190. |
Cardiac action potentials and pacemaker activity of sinoatrial node (DiFrancesco & Noble 1985)
|
191. |
Cardiac Atrial Cell (Courtemanche et al 1998)
|
192. |
Cardiac Atrial Cell (Courtemanche et al 1998) (C++)
|
193. |
Cell signaling/ion channel variability effects on neuronal response (Anderson, Makadia, et al. 2015)
|
194. |
Cerebellar Golgi cell (Solinas et al. 2007a, 2007b)
|
195. |
Cerebellar Golgi cells, dendritic processing, and synaptic plasticity (Masoli et al 2020)
|
196. |
Cerebellar granular layer (Maex and De Schutter 1998)
|
197. |
Cerebellar granule cell (Masoli et al 2020)
|
198. |
Cerebellar nuclear neuron (Sudhakar et al., 2015)
|
199. |
Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010)
|
200. |
Cerebellar purkinje cell (De Schutter and Bower 1994)
|
201. |
Cerebellar purkinje cell: interacting Kv3 and Na currents influence firing (Akemann, Knopfel 2006)
|
202. |
Cerebellar purkinje cell: K and Ca channels regulate APs (Miyasho et al 2001)
|
203. |
Cerebellar Purkinje Cell: resurgent Na current and high frequency firing (Khaliq et al 2003)
|
204. |
Cerebellum granule cell FHF (Dover et al. 2016)
|
205. |
Changes of ionic concentrations during seizure transitions (Gentiletti et al. 2016)
|
206. |
Channel density variability among CA1 neurons (Migliore et al. 2018)
|
207. |
Circadian rhythmicity shapes astrocyte morphology and neuronal function in CA1 (McCauley et al 2020)
|
208. |
CN bushy, stellate neurons (Rothman, Manis 2003)
|
209. |
CN bushy, stellate neurons (Rothman, Manis 2003) (Brian 2)
|
210. |
CN bushy, stellate neurons (Rothman, Manis 2003) (Brian)
|
211. |
CN pyramidal fusiform cell (Kanold, Manis 2001)
|
212. |
Coincidence detection in avian brainstem (Simon et al 1999)
|
213. |
Coincidence detection in MSO principal cells (Goldwyn et al. 2019)
|
214. |
Coincident signals in Olfactory Bulb Granule Cell spines (Aghvami et al 2019)
|
215. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
216. |
Comparison of DA-based Stochastic Algorithms (Pezo et al. 2014)
|
217. |
Comparison of full and reduced globus pallidus models (Hendrickson 2010)
|
218. |
Compartmentalization of GABAergic inhibition by dendritic spines (Chiu et al. 2013)
|
219. |
Competition for AP initiation sites in a circuit controlling simple learning (Cruz et al. 2007)
|
220. |
Complex CA1-neuron to study AP initiation (Wimmer et al. 2010)
|
221. |
Composite spiking network/neural field model of Parkinsons (Kerr et al 2013)
|
222. |
Computational analysis of NN activity and spatial reach of sharp wave-ripples (Canakci et al 2017)
|
223. |
Computational aspects of feedback in neural circuits (Maass et al 2006)
|
224. |
Computational Model of a Central Pattern Generator (Cataldo et al 2006)
|
225. |
Computational model of bladder small DRG neuron soma (Mandge & Manchanda 2018)
|
226. |
Computational modeling of ultrasonic Subthalamic Nucleus stimulation (Tarnaud et al 2019)
|
227. |
Computational neuropharmacology of CA1 pyramidal neuron (Ferrante et al. 2008)
|
228. |
Computer model of clonazepam's effect in thalamic slice (Lytton 1997)
|
229. |
Computer models of corticospinal neurons replicate in vitro dynamics (Neymotin et al. 2017)
|
230. |
Computer simulations of neuron-glia interactions mediated by ion flux (Somjen et al. 2008)
|
231. |
Conductance-based model of Layer-4 in the barrel cortex (Argaman et Golomb 2017)
|
232. |
Conductance-based model of rodent thoracic sympathetic postganglionic neuron (McKinnon et al 2019)
|
233. |
Conduction in uniform myelinated axons (Moore et al 1978)
|
234. |
Contrast invariance by LGN synaptic depression (Banitt et al. 2007)
|
235. |
Control of oscillations and spontaneous firing in dopamine neurons (Rumbell & Kozloski 2019)
|
236. |
Control of vibrissa motoneuron firing (Harish and Golomb 2010)
|
237. |
Convergence regulates synchronization-dependent AP transfer in feedforward NNs (Sailamul et al 2017)
|
238. |
Cooling reverses pathological spontaneous firing caused by mild traumatic injury (Barlow et al 2018)
|
239. |
Cortex-Basal Ganglia-Thalamus network model (Kumaravelu et al. 2016)
|
240. |
Cortical Basal Ganglia Network Model during Closed-loop DBS (Fleming et al 2020)
|
241. |
Cortical Layer 5b pyr. cell with [Na+]i mechanisms, from Hay et al 2011 (Zylbertal et al 2017)
|
242. |
Cortical network model of posttraumatic epileptogenesis (Bush et al 1999)
|
243. |
Cortical pyramidal neuron, phase response curve (Stiefel et al 2009)
|
244. |
Criticality,degeneracy in injury-induced changes in primary afferent excitability (Ratte et al 2014)
|
245. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
246. |
Current flow during PAP in squid axon at diameter change (Joyner et al 1980)
|
247. |
Currents contributing to decision making in neurons B31-B32 of Aplysia (Hurwitz et al. 2008)
|
248. |
D2 dopamine receptor modulation of interneuronal activity (Maurice et al. 2004)
|
249. |
Data-driven, HH-type model of the lateral pyloric (LP) cell in the STG (Nowotny et al. 2008)
|
250. |
DBS of a multi-compartment model of subthalamic nucleus projection neurons (Miocinovic et al. 2006)
|
251. |
DCN fusiform cell (Ceballos et al. 2016)
|
252. |
Deconstruction of cortical evoked potentials generated by subthalamic DBS (Kumaravelu et al 2018)
|
253. |
Decorrelation in the developing visual thalamus (Tikidji-Hamburyan et al, accepted)
|
254. |
Demyelinated and remyelinating axon conductances (Hines, Shrager 1991)
|
255. |
Dendritic action potentials and computation in human layer 2/3 cortical neurons (Gidon et al 2020)
|
256. |
Dendritic Na inactivation drives a decrease in ISI (Fernandez et al 2005)
|
257. |
Dendritic processing of excitatory synaptic input in GnRH neurons (Roberts et al. 2006)
|
258. |
Dendritic properties control energy efficiency of APs in cortical pyramidal cells (Yi et al 2017)
|
259. |
Dendritica (Vetter et al 2001)
|
260. |
Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014)
|
261. |
Dentate Gyrus Feed-forward inhibition (Ferrante et al. 2009)
|
262. |
Dependence of neuronal firing on astroglial membrane transport mechanisms (Oyehaug et al 2012)
|
263. |
Determinants of the intracellular and extracellular waveforms in DA neurons (Lopez-Jury et al 2018)
|
264. |
Deterministic chaos in a mathematical model of a snail neuron (Komendantov and Kononenko 1996)
|
265. |
DG adult-born granule cell: nonlinear a5-GABAARs control AP firing (Lodge et al, 2021)
|
266. |
Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites (Golding et al 2001)
|
267. |
Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006)
|
268. |
Direct recruitment of S1 pyramidal cells and interneurons via ICMS (Overstreet et al., 2013)
|
269. |
Discharge hysteresis in motoneurons (Powers & Heckman 2015)
|
270. |
Discrimination on behavioral time-scales mediated by reaction-diffusion in dendrites (Bhalla 2017)
|
271. |
Distance-dependent synaptic strength in CA1 pyramidal neurons (Menon et al. 2013)
|
272. |
Distinct integration properties of noisy inputs in active dendritic subunits (Poleg-Polsky 2019)
|
273. |
Dopamine neuron of the vent. periaqu. gray and dors. raphe nucleus (vlPAG/DRN) (Dougalis et al 2017)
|
274. |
Dopaminergic subtantia nigra neuron (Moubarak et al 2019)
|
275. |
Dorsal root ganglion (DRG) neuronal model (Amir, Devor 2003)
|
276. |
Dorsal root ganglion (DRG) neuronal model (Kovalsky et al. 2009)
|
277. |
Double cable myelinated axon (Layer 5 pyramidal neuron; Cohen et al 2020)
|
278. |
DRG neuron models investigate how ion channel levels regulate firing properties (Zheng et al 2019)
|
279. |
Drosophila 3rd instar larval aCC motoneuron (Gunay et al. 2015)
|
280. |
DRt neuron model (Sousa et al., 2014)
|
281. |
Duration-tuned neurons from the inferior colliculus of vertebrates (Aubie et al. 2012)
|
282. |
Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
|
283. |
Dynamic dopamine modulation in the basal ganglia: Learning in Parkinson (Frank et al 2004,2005)
|
284. |
Dynamical assessment of ion channels during in vivo-like states (Guet-McCreight & Skinner 2020)
|
285. |
Dynamical model of olfactory bulb mitral cell (Rubin, Cleland 2006)
|
286. |
Dynamics of ramping bursts in a respiratory pre-Botzinger Complex model (Abdulla et al, 2021)
|
287. |
Early-onset epileptic encephalopathy (Miceli et al. 2015)
|
288. |
Effect of riluzole on action potential in cultured human skeletal muscle cells (Wang YJ et al. 2008)
|
289. |
Effect of slowly inactivating IKdr to delayed firing of action potentials (Wu et al. 2008)
|
290. |
Effect of the initial synaptic state on the probability to induce LTP and LTD (Migliore et al. 2015)
|
291. |
Effect of voltage sensitive fluorescent proteins on neuronal excitability (Akemann et al. 2009)
|
292. |
Effects of Acetyl-L-carnitine on neural transmission (Lombardo et al 2004)
|
293. |
Effects of Dopamine Modulation and KIR Inactivation in NAc Medium Spiny Neurons (Steephen 2011)
|
294. |
Effects of electric fields on cognitive functions (Migliore et al 2016)
|
295. |
Effects of eugenol on the firing of action potentials in NG108-15 neurons (Huang et al. 2011)
|
296. |
Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)
|
297. |
Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009)
|
298. |
Electrically-coupled Retzius neurons (Vazquez et al. 2009)
|
299. |
Electrodecrements in in vitro model of infantile spasms (Traub et al 2020)
|
300. |
Electrodiffusive astrocytic and extracellular ion concentration dynamics model (Halnes et al. 2013)
|
301. |
Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
|
302. |
Enhanced Excitability in Hermissenda: modulation by 5-HT (Cai et al 2003)
|
303. |
Enhancing the HH eqs: simulations based on the first publication in Biophys J (Moore 2015)
|
304. |
Ephaptic coupling in passive cable and MSO neuron models (Goldwyn & Rinzel 2016)
|
305. |
Epilepsy may be caused by very small functional changes in ion channels (Thomas et al. 2009)
|
306. |
Escape response latency in the Giant Fiber System of Drosophila melanogastor (Augustin et al 2019)
|
307. |
Estimation and Production of Time Intervals (Migliore et al 2001)
|
308. |
Evaluation of passive component of propagating AP in mossy fiber axons (Ohura & Kamiya 2018)
|
309. |
Excitability of DA neurons and their regulation by synaptic input (Morozova et al. 2016a, 2016b)
|
310. |
Excitability of PFC Basal Dendrites (Acker and Antic 2009)
|
311. |
Excitability of the soma in central nervous system neurons (Safronov et al 2000)
|
312. |
Excitation-contraction coupling/mitochondrial energetics (ECME) model (Cortassa et al. 2006)
|
313. |
Excitatory synaptic interactions in pyramidal neuron dendrites (Behabadi et al. 2012)
|
314. |
External Tufted Cell Model (Ryan Viertel, Alla Borisyuk 2019)
|
315. |
Extracellular stimulation of myelinated axon (Reilly 2016)
|
316. |
Failure of Deep Brain Stimulation in a basal ganglia neuronal network model (Dovzhenok et al. 2013)
|
317. |
Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
|
318. |
Fast-spiking cortical interneuron (Golomb et al. 2007)
|
319. |
Febrile seizure-induced modifications to Ih (Chen et al 2001)
|
320. |
Feedforward heteroassociative network with HH dynamics (Lytton 1998)
|
321. |
Feedforward inhibition in pyramidal cells (Ferrante & Ascoli 2015)
|
322. |
FHF2KO and Wild-Type Mouse Cardiomyocyte Strands (Park et al 2020)
|
323. |
Firing neocortical layer V pyramidal neuron (Reetz et al. 2014; Stadler et al. 2014)
|
324. |
Firing patterns in stuttering fast-spiking interneurons (Klaus et al. 2011)
|
325. |
Fluctuating synaptic conductances recreate in-vivo-like activity (Destexhe et al 2001)
|
326. |
Fly lobular plate VS cell (Borst and Haag 1996, et al. 1997, et al. 1999)
|
327. |
Fractional leaky integrate-and-fire model (Teka et al. 2014)
|
328. |
Frog second-order vestibular neuron models (Rossert et al. 2011)
|
329. |
FS Striatal interneuron: K currents solve signal-to-noise problems (Kotaleski et al 2006)
|
330. |
Function and energy constrain neuronal biophysics in coincidence detection (Remme et al 2018)
|
331. |
Functional impact of dendritic branch point morphology (Ferrante et al., 2013)
|
332. |
Functional structure of mitral cell dendritic tuft (Djurisic et al. 2008)
|
333. |
Gamma and theta rythms in biophysical models of hippocampus circuits (Kopell et al. 2011)
|
334. |
Gamma genesis in the basolateral amygdala (Feng et al 2019)
|
335. |
Gamma oscillations in hippocampal interneuron networks (Bartos et al 2002)
|
336. |
Gamma oscillations in hippocampal interneuron networks (Wang, Buzsaki 1996)
|
337. |
Gap-junction coupled network activity depends on coupled dendrites diameter (Gansert et al. 2007)
|
338. |
Gating of steering signals through phasic modulation of reticulospinal neurons (Kozlov et al. 2014)
|
339. |
GC model (Beining et al 2017)
|
340. |
Geometry-induced features of current transfer in neuronal dendrites (Korogod, Kulagina 1998)
|
341. |
Global structure, robustness, and modulation of neuronal models (Goldman et al. 2001)
|
342. |
Globus pallidus multi-compartmental model neuron with realistic morphology (Gunay et al. 2008)
|
343. |
Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010)
|
344. |
Goldfish Mauthner cell (Medan et al 2017)
|
345. |
GPi/GPe neuron models (Johnson and McIntyre 2008)
|
346. |
Grid cell oscillatory interference with noisy network oscillators (Zilli and Hasselmo 2010)
|
347. |
H-currents effect on the fluctuation of gamma/beta oscillations (Avella-Gonzalez et al., 2015)
|
348. |
Half-center oscillator database of leech heart interneuron model (Doloc-Mihu & Calabrese 2011)
|
349. |
Heterogeneous axon model (Zang et al, accepted)
|
350. |
HH model neuron of the Suprachiasmatic Nucleus including a persistent Na+ channel (Paul et al 2016)
|
351. |
HH model of SCN neurons including a transient K+ channel (Bano-Otalora et al 2021)
|
352. |
HH-type model of fast-spiking parvalbumin interneurons in spinal dorsal horn (Ma et al, 2023)
|
353. |
High frequency oscillations in a hippocampal computational model (Stacey et al. 2009)
|
354. |
High frequency stimulation of the Subthalamic Nucleus (Rubin and Terman 2004)
|
355. |
Hippocampal basket cell gap junction network dynamics (Saraga et al. 2006)
|
356. |
Hippocampal CA1 microcircuit model including somatic and dendritic inhibition
|
357. |
Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)
|
358. |
Hippocampal CA1 pyramidal cell demonstrating dynamic mode switching (Berteau & Bullock 2020)
|
359. |
Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
|
360. |
Hippocampal CA3 thorny and a-thorny principal neuron models (Linaro et al in review)
|
361. |
Hippocampal Mossy Fiber bouton: presynaptic KV7 channel function (Martinello et al 2019)
|
362. |
Hippocampus CA1 Interneuron Specific 3 (IS3) in vivo-like virtual NN simulations (Luo et al 2020)
|
363. |
Hippocampus CA1 pyramidal model with Na channel exhibiting slow inactivation (Menon et al. 2009)
|
364. |
Hippocampus temporo-septal engram shift model (Lytton 1999)
|
365. |
HMM of Nav1.7 WT and F1449V (Gurkiewicz et al. 2011)
|
366. |
Hodgkin-Huxley model of persistent activity in PFC neurons (Winograd et al. 2008) (NEURON python)
|
367. |
Hodgkin-Huxley model of persistent activity in prefrontal cortex neurons (Winograd et al. 2008)
|
368. |
Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008)
|
369. |
Hodgkin-Huxley with dynamic ion concentrations (Hubel and Dahlem, 2014)
|
370. |
Hodgkin–Huxley model with fractional gating (Teka et al. 2016)
|
371. |
Homeostatic mechanisms may shape oscillatory modulations (Peterson & Voytek 2020)
|
372. |
Homeostatic synaptic plasticity (Rabinowitch and Segev 2006a,b)
|
373. |
Homosynaptic plasticity in the tail withdrawal circuit (TWC) of Aplysia (Baxter and Byrne 2006)
|
374. |
Hopfield and Brody model (Hopfield, Brody 2000)
|
375. |
Human Cortical L5 Pyramidal Cell (Rich et al. 2021)
|
376. |
Human L5 Cortical Circuit (Guet-McCreight)
|
377. |
Human layer 2/3 cortical microcircuits in health and depression (Yao et al, 2022)
|
378. |
Hyperexcitability from Nav1.2 channel loss in neocortical pyramidal cells (Spratt et al 2021)
|
379. |
Hypocretin and Locus Coeruleus model neurons (Carter et al 2012)
|
380. |
Hysteresis in voltage gating of HCN channels (Elinder et al 2006, Mannikko et al 2005)
|
381. |
I A in Kenyon cells resemble Shaker currents (Pelz et al 1999)
|
382. |
IA and IT interact to set first spike latency (Molineux et al 2005)
|
383. |
Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)
|
384. |
Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010)
|
385. |
Impact of dendritic size and topology on pyramidal cell burst firing (van Elburg and van Ooyen 2010)
|
386. |
Impedance spectrum in cortical tissue: implications for LFP signal propagation (Miceli et al. 2017)
|
387. |
INa and IKv4.3 heterogeneity in canine LV myocytes (Flaim et al 2006)
|
388. |
Increased computational accuracy in multi-compartmental cable models (Lindsay et al. 2005)
|
389. |
Inferring connection proximity in electrically coupled networks (Cali et al. 2007)
|
390. |
Influence of dendritic structure on neocortical neuron firing patterns (Mainen and Sejnowski 1996)
|
391. |
Information trans. through Entopeduncular nucleus modified by synaptic plasticity (Gorodetsky et al)
|
392. |
Information-processing in lamina-specific cortical microcircuits (Haeusler and Maass 2006)
|
393. |
Infraslow intrinsic rhythmogenesis in a subset of AOB projection neurons (Gorin et al 2016)
|
394. |
Inhibition and glial-K+ interaction leads to diverse seizure transition modes (Ho & Truccolo 2016)
|
395. |
Initiation of spreading depolarization by GABAergic neuron hyperactivity & NaV 1.1 (Chever et al 21)
|
396. |
Input Fluctuations effects on f-I curves (Arsiero et al. 2007)
|
397. |
Interneuron Specific 3 Interneuron Model (Guet-McCreight et al, 2016)
|
398. |
Intracortical synaptic potential modulation by presynaptic somatic potential (Shu et al. 2006, 2007)
|
399. |
Intrinsic sensory neurons of the gut (Chambers et al. 2014)
|
400. |
Investigation of different targets in deep brain stimulation for Parkinson`s (Pirini et al. 2009)
|
401. |
Ionic basis of alternans and Timothy Syndrome (Fox et al. 2002), (Zhu and Clancy 2007)
|
402. |
Ionic current model of a Hypoglossal Motoneuron (Purvis & Butera 2005)
|
403. |
Ionic mechanisms of bursting in CA3 pyramidal neurons (Xu and Clancy 2008)
|
404. |
Ionic mechanisms of dendritic spikes (Almog and Korngreen 2014)
|
405. |
Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)
|
406. |
Kenyon cells in the honeybee (Wustenberg et al 2004)
|
407. |
Kinetic properties of voltage gated Na channel (Nayak and Sikdar 2007)
|
408. |
KInNeSS : a modular framework for computational neuroscience (Versace et al. 2008)
|
409. |
Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
|
410. |
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
|
411. |
L4 cortical barrel NN model receiving thalamic input during whisking or touch (Gutnisky et al. 2017)
|
412. |
L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)
|
413. |
L5 PFC pyramidal neurons (Papoutsi et al. 2017)
|
414. |
L5 pyr. cell spiking control by oscillatory inhibition in distal apical dendrites (Li et al 2013)
|
415. |
L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011)
|
416. |
Lamprey spinal CPG neuron (Huss et al. 2007)
|
417. |
Large scale model of the olfactory bulb (Yu et al., 2013)
|
418. |
Large scale neocortical model for PGENESIS (Crone et al 2019)
|
419. |
Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
|
420. |
Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012)
|
421. |
Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)
|
422. |
Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018)
|
423. |
LCN-HippoModel: model of CA1 PCs deep-superficial theta firing dynamics (Navas-Olive et al 2020)
|
424. |
Leaky Integrate and Fire Neuron Model of Context Integration (Calvin, Redish 2021)
|
425. |
Leech Heart (HE) Motor Neuron conductances contributions to NN activity (Lamb & Calabrese 2013)
|
426. |
Leech heart interneuron network model (Hill et al 2001, 2002)
|
427. |
Leech Mechanosensory Neurons: Synaptic Facilitation by Reflected APs (Baccus 1998)
|
428. |
Leech S Cell: Modulation of Excitability by Serotonin (Burrell and Crisp 2008)
|
429. |
Lillie Transition: onset of saltatory conduction in myelinating axons (Young et al. 2013)
|
430. |
Linear vs non-linear integration in CA1 oblique dendrites (Gómez González et al. 2011)
|
431. |
LIP and FEF rhythmic attention model (Aussel et al. 2023)
|
432. |
Lobster STG pyloric network model with calcium sensor (Gunay & Prinz 2010) (Prinz et al. 2004)
|
433. |
Locational influence of dendritic PIC on input-output properties of spinal motoneurons (Kim 2017)
|
434. |
Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
|
435. |
Long-Term Inactivation of Na+ Channels as a Mech of Adaptation in CA1 Pyr Cells (Upchurch et al '22)
|
436. |
Low Threshold Calcium Currents in TC cells (Destexhe et al 1998)
|
437. |
Low Threshold Calcium Currents in TC cells (Destexhe et al 1998) (Brian)
|
438. |
M1 and M4 intrinsically photosensitive retinal ganglion cells (Stinchcombe et al. 2021)
|
439. |
Mammalian Ventricular Cell (Beeler and Reuter 1977)
|
440. |
Markov Chain-based Stochastic Shielding Hodgkin Huxley Model (Schmandt, Galan 2012)
|
441. |
Markov models of SCN1A (NaV1.1) applied to abnormal gating and epilepsy (Clancy and Kass 2004)
|
442. |
Markovian model for cardiac sodium channel (Clancy, Rudy 2002)
|
443. |
Markovian model for SCN8A-encoded channel (Kuo et al 2020)
|
444. |
Mathematical model for windup (Aguiar et al. 2010)
|
445. |
Mature and young adult-born dentate granule cell models (T2N interface) (Beining et al. 2017)
|
446. |
Maximal firing rate in midbrain dopamine neurons (Knowlton et al., 2021)
|
447. |
MCCAIS model (multicompartmental cooperative AIS) (Öz et al 2015)
|
448. |
MEC layer II stellate cell: Synaptic mechanisms of grid cells (Schmidt-Hieber & Hausser 2013)
|
449. |
MEC PV-positive fast-spiking interneuron network generates theta-nested fast oscillations
|
450. |
Mechanisms of extraneuronal space shrinkage (Ostby et al 2009)
|
451. |
Mechanisms of fast rhythmic bursting in a layer 2/3 cortical neuron (Traub et al 2003)
|
452. |
Mechanisms of very fast oscillations in axon networks coupled by gap junctions (Munro, Borgers 2010)
|
453. |
Mechanisms underlying subunit independence in pyramidal neuron dendrites (Behabadi and Mel 2014)
|
454. |
Medial vestibular neuron models (Quadroni and Knopfel 1994)
|
455. |
MEG of Somatosensory Neocortex (Jones et al. 2007)
|
456. |
Membrane electrical properties of mouse CA1 pyramidal cells during strong inputs (Bianchi et al 22)
|
457. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
458. |
Midbrain torus semicircularis neuron model (Aumentado-Armstrong et al. 2015)
|
459. |
Minimal cell model (Av-Ron et al 1991)
|
460. |
Minimal model of interictal and ictal discharges “Epileptor-2” (Chizhov et al 2018)
|
461. |
Mirror Neuron (Antunes et al 2017)
|
462. |
MNTB Neuron: Kv3.1 currents (Wang et al 1998)
|
463. |
Model for K-ATP mediated bursting in mSNc DA neurons (Knowlton et al 2018)
|
464. |
Model of arrhythmias in a cardiac cells network (Casaleggio et al. 2014)
|
465. |
Model of eupnea and sigh generation in respiratory network (Toporikova et al 2015)
|
466. |
Model of long range transmission of gamma oscillation (Murray 2007)
|
467. |
Model of repetitive firing in Grueneberg ganglion olfactory neurons (Liu et al., 2012)
|
468. |
Model of SK current`s influence on precision in Globus Pallidus Neurons (Deister et al. 2009)
|
469. |
Model of the cerebellar granular network (Sudhakar et al 2017)
|
470. |
Modeling a Nociceptive Neuro-Immune Synapse Activated by ATP and 5-HT in Meninges (Suleimanova et al., 2020)
|
471. |
Modeling conductivity profiles in the deep neocortical pyramidal neuron (Wang K et al. 2013)
|
472. |
Modeling interactions in Aplysia neuron R15 (Yu et al 2004)
|
473. |
Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018)
|
474. |
Modelling reduced excitability in aged CA1 neurons as a Ca-dependent process (Markaki et al. 2005)
|
475. |
Models of Na channels from a paper on the PKC control of I Na,P (Baker 2005)
|
476. |
Modulation of septo-hippocampal theta activity by GABAA receptors (Hajos et al. 2004)
|
477. |
Morphological determinants of action potential dynamics in substantia nigra (Moubarak et al 2022)
|
478. |
Motoneuron model of self-sustained firing after spinal cord injury (Kurian et al. 2011)
|
479. |
Mouse Episodic and Continuous Locomotion CPG (Sharples et al, 2022)
|
480. |
Multi-comp. CA1 O-LM interneuron model with varying dendritic Ih distributions (Sekulic et al 2015)
|
481. |
Multicompartmental cerebellar granule cell model (Diwakar et al. 2009)
|
482. |
Multiple modes of a conditional neural oscillator (Epstein, Marder 1990)
|
483. |
Multiplexed coding in Purkinje neuron dendrites (Zang and De Schutter 2021)
|
484. |
Multiplication by NMDA receptors in Direction Selective Ganglion cells (Poleg-Polsky & Diamond 2016)
|
485. |
Multiscale interactions between chemical and electric signaling in LTP (Bhalla 2011)
|
486. |
Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
|
487. |
Multiscale model of olfactory receptor neuron in mouse (Dougherty 2009)
|
488. |
Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013)
|
489. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
490. |
Muscle spindle feedback circuit (Moraud et al, 2016)
|
491. |
Myelinated axon conduction velocity (Brill et al 1977)
|
492. |
Myelinated nerve fibre myelin resistance dependent on extracellular K+ level (Brazhe et al. 2010)
|
493. |
MyFirstNEURON (Houweling, Sejnowski 1997)
|
494. |
Na channel mutations in the dentate gyrus (Thomas et al. 2009)
|
495. |
Na+ channel dependence of AP initiation in cortical pyramidal neuron (Kole et al. 2008)
|
496. |
Na+ Signals in olfactory bulb neurons (granule cell model) (Ona-Jodar et al. 2017)
|
497. |
NAcc medium spiny neuron: effects of cannabinoid withdrawal (Spiga et al. 2010)
|
498. |
Nav1.6 sodium channel model in globus pallidus neurons (Mercer et al. 2007)
|
499. |
Neocort. pyramidal cells subthreshold somatic voltage controls spike propagation (Munro Kopell 2012)
|
500. |
Neocortical pyramidal neuron: deep; effects of dopamine (Durstewitz et al 2000)
|
501. |
Nerve terminal currents at lizard neuromuscular junction (Lindgren, Moore 1989)
|
502. |
Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
|
503. |
Network model with neocortical architecture (Anderson et al 2007,2012; Azhar et al 2012)
|
504. |
Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011)
|
505. |
Neurite: electrophysiological-mechanical coupling simulation framework (Garcia-Grajales et al 2015)
|
506. |
NeuroGPU example on L5_TTPC1_cADpyr232_1 (Ben-Shalom 2022)(Ramaswamy et al., 2015)
|
507. |
NeuroMatic: software for acquisition, analysis and simulation of e-phys data (Rothman & Silver 2018)
|
508. |
Neuromusculoskeletal modeling with neural and finite element models (Volk et al, 2021)
|
509. |
Neuronal dendrite calcium wave model (Neymotin et al, 2015)
|
510. |
Neuronal morphology goes digital ... (Parekh & Ascoli 2013)
|
511. |
Neurophysiological impact of inactivation pathways in A-type K+ channels (Fineberg et al 2012)
|
512. |
Neuroprotective Role of Gap Junctions in a Neuron Astrocyte Network Model (Huguet et al 2016)
|
513. |
Nigral dopaminergic neurons: effects of ethanol on Ih (Migliore et al. 2008)
|
514. |
NMDA receptors enhance the fidelity of synaptic integration (Li and Gulledge 2021)
|
515. |
NMDA subunit effects on Calcium and STDP (Evans et al. 2012)
|
516. |
NMDAR & GABAB/KIR Give Bistable Dendrites: Working Memory & Sequence Readout (Sanders et al., 2013)
|
517. |
NN activity impact on neocortical pyr. neurons integrative properties in vivo (Destexhe & Pare 1999)
|
518. |
Nodes of Ranvier with left-shifted Nav channels (Boucher et al. 2012)
|
519. |
Nodose sensory neuron (Schild et al. 1994, Schild and Kunze 1997)
|
520. |
Nonlinear dendritic processing in barrel cortex spiny stellate neurons (Lavzin et al. 2012)
|
521. |
Normal ripples, abnormal ripples, and fast ripples in a hippocampal model (Fink et al. 2015)
|
522. |
Novel Na current with slow de-inactivation (Tsutsui, Oka 2002)
|
523. |
Olfactory bulb cluster formation (Migliore et al. 2010)
|
524. |
Olfactory bulb granule cell: effects of odor deprivation (Saghatelyan et al 2005)
|
525. |
Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
|
526. |
Olfactory bulb mitral and granule cell column formation (Migliore et al. 2007)
|
527. |
Olfactory bulb mitral and granule cell: dendrodendritic microcircuits (Migliore and Shepherd 2008)
|
528. |
Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
|
529. |
Olfactory bulb mitral cell: synchronization by gap junctions (Migliore et al 2005)
|
530. |
Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
|
531. |
Olfactory Bulb Network (Davison et al 2003)
|
532. |
Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)
|
533. |
Olfactory Computations in Mitral-Granule cell circuits (Migliore & McTavish 2013)
|
534. |
Olfactory Mitral Cell (Bhalla, Bower 1993)
|
535. |
Olfactory Mitral Cell (Davison et al 2000)
|
536. |
Olfactory Mitral cell: AP initiation modes (Chen et al 2002)
|
537. |
On stochastic diff. eq. models for ion channel noise in Hodgkin-Huxley neurons (Goldwyn et al. 2010)
|
538. |
Opposing roles for Na+/Ca2+ exchange and Ca2+-activated K+ currents during STDP (O`Halloran 2020)
|
539. |
Optical stimulation of a channelrhodopsin-2 positive pyramidal neuron model (Foutz et al 2012)
|
540. |
Optimal deep brain stimulation of the subthalamic nucleus-a computational study (Feng et al. 2007)
|
541. |
Orientation preference in L23 V1 pyramidal neurons (Park et al 2019)
|
542. |
Origin of heterogeneous spiking patterns in spinal dorsal horn neurons (Balachandar & Prescott 2018)
|
543. |
Pacemaker neurons and respiratory rhythm generation (Purvis et al 2007)
|
544. |
Paired turbulence and light effect on calcium increase in Hermissenda (Blackwell 2004)
|
545. |
Paradoxical effect of fAHP amplitude on gain in dentate gyrus granule cells (Jaffe & Brenner 2018)
|
546. |
Paradoxical GABA-mediated excitation (Lewin et al. 2012)
|
547. |
Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)
|
548. |
Parameter estimation for Hodgkin-Huxley based models of cortical neurons (Lepora et al. 2011)
|
549. |
Parameter optimization using CMA-ES (Jedrzejewski-Szmek et al 2018)
|
550. |
Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells (Lee et al. 2014)
|
551. |
Patterns of synchronization in 2D networks of inhibitory neurons (Miller et al, 2022)
|
552. |
Periodicity in Na channel properties alters model neuron excitability (Majumdar and Sikdar 2007)
|
553. |
Peripheral nerve:Morris-Lecar implementation of (Schwarz et al 1995)
|
554. |
Persistent Spiking in ACC Neurons (Ratte et al 2018)
|
555. |
Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005)
|
556. |
Phase plane reveals two slow variables in midbrain dopamine neuron bursts (Yu and Canavier, 2015)
|
557. |
Phase response curve of a globus pallidal neuron (Fujita et al. 2011)
|
558. |
Phase-locking analysis with transcranial magneto-acoustical stimulation (Yuan et al 2017)
|
559. |
Phenomenological models of NaV1.5: Hodgkin-Huxley and kinetic formalisms (Andreozzi et al 2019)
|
560. |
Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017)
|
561. |
PreBotzinger Complex inspiratory neuron with NaP and CAN currents (Park and Rubin 2013)
|
562. |
Prediction for the presence of voltage-gated Ca2+ channels in myelinated central axons (Brown 2003)
|
563. |
Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)
|
564. |
Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011)
|
565. |
Properties of aconitine-induced block of KDR current in NG108-15 neurons (Lin et al. 2008)
|
566. |
Prosthetic electrostimulation for information flow repair in a neocortical simulation (Kerr 2012)
|
567. |
PyMUS: A Python based Motor Unit Simulator (Kim & Kim 2018)
|
568. |
PyPNS: Multiscale Simulation of a Peripheral Nerve in Python (Lubba et al 2018)
|
569. |
Pyramidal neuron coincidence detection tuned by dendritic branching pattern (Schaefer et al 2003)
|
570. |
Pyramidal neuron conductances state and STDP (Delgado et al. 2010)
|
571. |
Pyramidal Neuron Deep: Constrained by experiment (Dyhrfjeld-Johnsen et al. 2005)
|
572. |
Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
|
573. |
Pyramidal Neuron: Deep, Thalamic Relay and Reticular, Interneuron (Destexhe et al 1998, 2001)
|
574. |
Pyramidal neurons switch from integrators to resonators (Prescott et al. 2008)
|
575. |
Pyramidal neurons with mutated SCN2A gene (Nav1.2) (Ben-Shalom et al 2017)
|
576. |
Pyramidal neurons: IKHT offsets activation of IKLT to increase gain (Fernandez et al 2005)
|
577. |
Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
|
578. |
Rat phrenic motor neuron (Amini et al 2004)
|
579. |
Rat subthalamic projection neuron (Gillies and Willshaw 2006)
|
580. |
Realistic amplifier model (Oláh et al. 2021)
|
581. |
Reconstructing cerebellar granule layer evoked LFP using convolution (ReConv) (Diwakar et al. 2011)
|
582. |
Recurrent discharge in a reduced model of cat spinal motoneuron (Balbi et al, 2013)
|
583. |
Reduced-morphology model of CA1 pyramidal cells optimized + validated w/ HippoUnit (Tomko et al '21)
|
584. |
Regulation of a slow STG rhythm (Nadim et al 1998)
|
585. |
Regulation of firing frequency in a midbrain dopaminergic neuron model (Kuznetsova et al. 2010)
|
586. |
Regulation of motoneuron excitability by KCNQ/Kv7 modulators (Lombardo & Harrington 2016)
|
587. |
Regulation of the firing pattern in dopamine neurons (Komendantov et al 2004)
|
588. |
Rejuvenation model of dopamine neuron (Chan et al. 2007)
|
589. |
Relating anatomical and biophysical properties to motoneuron excitabilty (Moustafa et al. 2023)
|
590. |
Reliability of Morris-Lecar neurons with added T, h, and AHP currents (Zeldenrust et al. 2013)
|
591. |
Respiratory central pattern generator (mammalian brainstem) (Rubin & Smith 2019)
|
592. |
Respiratory central pattern generator including Kolliker-Fuse nucleus (Wittman et al 2019)
|
593. |
Respiratory central pattern generator network in mammalian brainstem (Rubin et al. 2009)
|
594. |
Respiratory control model with brainstem CPG and sensory feedback (Diekman, Thomas, and Wilson 2017)
|
595. |
Respiratory pacemaker neurons (Butera et al 1999)
|
596. |
Response properties of neocort. neurons to temporally modulated noisy inputs (Koendgen et al. 2008)
|
597. |
Response to correlated synaptic input for HH/IF point neuron vs with dendrite (Górski et al 2018)
|
598. |
Resurgent Na+ current offers noise modulation in bursting neurons (Venugopal et al 2019)
|
599. |
Resurgent sodium transient current in zebra finch RA (Zemel et al., 2021)
|
600. |
Retinal Ganglion Cell: I-Na,t (Benison et al 2001)
|
601. |
Rhesus Monkey Layer 3 Pyramidal Neurons: Young vs aged PFC (Coskren et al. 2015)
|
602. |
Rhesus Monkey Young and Aged L3 PFC Pyramidal Neurons (Rumbell et al. 2016)
|
603. |
Robust and tunable bursting requires slow positive feedback (Franci et al 2018)
|
604. |
Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)
|
605. |
Role of afferent-hair cell connectivity in determining spike train regularity (Holmes et al 2017)
|
606. |
Role of Ih in firing patterns of cold thermoreceptors (Orio et al., 2012)
|
607. |
Role of the AIS in the control of spontaneous frequency of dopaminergic neurons (Meza et al 2017)
|
608. |
Roles of I(A) and morphology in AP prop. in CA1 pyramidal cell dendrites (Acker and White 2007)
|
609. |
S cell network (Moss et al 2005)
|
610. |
Salamander retinal ganglian cells: morphology influences firing (Sheasby, Fohlmeister 1999)
|
611. |
Salamander retinal ganglion cell: ion channels (Fohlmeister, Miller 1997)
|
612. |
Schiz.-linked gene effects on intrinsic single-neuron excitability (Maki-Marttunen et al. 2016)
|
613. |
SCN1A gain-of-function in early infantile encephalopathy (Berecki et al 2019)
|
614. |
SCZ-associated variant effects on L5 pyr cell NN activity and delta osc. (Maki-Marttunen et al 2018)
|
615. |
Selective control of cortical axonal spikes by a slowly inactivating K+ current (Shu et al. 2007)
|
616. |
Self-organized olfactory pattern recognition (Kaplan & Lansner 2014)
|
617. |
Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
|
618. |
Serotonergic modulation of Aplysia sensory neurons (Baxter et al 1999)
|
619. |
Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)
|
620. |
Sharpness of spike initiation in neurons explained by compartmentalization (Brette 2013)
|
621. |
Short term plasticity of synapses onto V1 layer 2/3 pyramidal neuron (Varela et al 1997)
|
622. |
Signal fidelity in the rostral nucleus of the solitary tract (Boxwell et al 2018)
|
623. |
Simple and accurate Diffusion Approximation algor. for stochastic ion channels (Orio & Soudry 2012)
|
624. |
Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014)
|
625. |
Simulating ion channel noise in an auditory brainstem neuron model (Schmerl & McDonnell 2013)
|
626. |
Simulation studies on mechanisms of levetiracetam-mediated inhibition of IK(DR) (Huang et al. 2009)
|
627. |
Simulation study of Andersen-Tawil syndrome (Sung et al 2006)
|
628. |
Simulations of oscillations in piriform cortex (Wilson & Bower 1992)
|
629. |
Single compartment Dorsal Lateral Medium Spiny Neuron w/ NMDA and AMPA (Biddell and Johnson 2013)
|
630. |
Single E-I oscillating network with amplitude modulation (Avella Gonzalez et al. 2012)
|
631. |
Single neuron with ion concentrations to model anoxic depolarization (Zandt et al. 2011)
|
632. |
Single-cell comprehensive biophysical model of SN pars compacta (Muddapu & Chakravarthy 2021)
|
633. |
Site of impulse initiation in a neuron (Moore et al 1983)
|
634. |
Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
|
635. |
Small world networks of Type I and Type II Excitable Neurons (Bogaard et al. 2009)
|
636. |
Sodium channel mutations causing generalized epilepsy with febrile seizures + (Barela et al. 2006)
|
637. |
Sodium currents activate without a delay (Baranauskas and Martina 2006)
|
638. |
Software for teaching neurophysiology of neuronal circuits (Grisham et al. 2008)
|
639. |
Software for teaching the Hodgkin-Huxley model (Hernandez & Zurek 2013) (SENB written in NEURON hoc)
|
640. |
Sound-evoked activity in peripheral axons of type I spiral ganglion neurons (Budak et al. 2021)
|
641. |
Spatial summation of excitatory and inhibitory inputs in pyramidal neurons (Hao et al. 2010)
|
642. |
Specific inhibition of dendritic plateau potential in striatal projection neurons (Du et al 2017)
|
643. |
Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)
|
644. |
Spike frequency adaptation in the LGMD (Peron and Gabbiani 2009)
|
645. |
Spike Initiation in Neocortical Pyramidal Neurons (Mainen et al 1995)
|
646. |
Spike propagation and bouton activation in terminal arborizations (Luscher, Shiner 1990)
|
647. |
Spike repolarization in axon collaterals (Foust et al. 2011)
|
648. |
Spike trains in Hodgkin–Huxley model and ISIs of acupuncture manipulations (Wang et al. 2008)
|
649. |
Spikelet generation and AP initiation in a L5 neocortical pyr neuron (Michalikova et al. 2017) Fig 1
|
650. |
Spikelet generation and AP initiation in a simplified pyr neuron (Michalikova et al. 2017) Fig 3
|
651. |
Spikes,synchrony,and attentive learning by laminar thalamocort. circuits (Grossberg & Versace 2007)
|
652. |
Spinal circuits controlling limb coordination and gaits in quadrupeds (Danner et al 2017)
|
653. |
Spinal motoneuron recruitment regulated by ionic channels during fictive locomotion (Zhang & Dai 20)
|
654. |
Spinal Motor Neuron (Dodge, Cooley 1973)
|
655. |
Spinal Motor Neuron (McIntyre et al 2002)
|
656. |
Spinal Motor Neuron: Na, K_A, and K_DR currents (Safronov, Vogel 1995)
|
657. |
Spine fusion and branching affects synaptic response (Rusakov et al 1996, 1997)
|
658. |
Spiny Projection Neuron Ca2+ based plasticity is robust to in vivo spike train (Dorman&Blackwell)
|
659. |
Spontaneous firing caused by stochastic channel gating (Chow, White 1996)
|
660. |
Spreading Depolarization in Brain Slices (Kelley et al. 2022)
|
661. |
Spreading depression model for FHM3 with Nav1.1 mutation (Dahlem et al. 2014)
|
662. |
Squid axon (Hodgkin, Huxley 1952) (LabAXON)
|
663. |
Squid axon (Hodgkin, Huxley 1952) (NEURON)
|
664. |
Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other)
|
665. |
Squid axon (Hodgkin, Huxley 1952) (SNNAP)
|
666. |
Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language)
|
667. |
Squid axon: Bifurcation analysis of mode-locking (Lee & Kim 2006) (Gangal & Dar 2014)
|
668. |
State and location dependence of action potential metabolic cost (Hallermann et al., 2012)
|
669. |
State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013)
|
670. |
State-dependent rhythmogenesis in a half-center locomotor CPG (Ausborn et al 2017)
|
671. |
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
|
672. |
STDP and BDNF in CA1 spines (Solinas et al. 2019)
|
673. |
STDP depends on dendritic synapse location (Letzkus et al. 2006)
|
674. |
STDP promotes synchrony of inhibitory networks in the presence of heterogeneity (Talathi et al 2008)
|
675. |
Stochastic 3D model of neonatal rat spinal motoneuron (Ostroumov 2007)
|
676. |
Stochastic calcium mechanisms cause dendritic calcium spike variability (Anwar et al. 2013)
|
677. |
Stochastic Hodgkin-Huxley Model: 14x28D Langevin Simulation (Pu and Thomas, 2020).
|
678. |
Stochastic ion channels and neuronal morphology (Cannon et al. 2010)
|
679. |
Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
|
680. |
Striatal NN model of MSNs and FSIs investigated effects of dopamine depletion (Damodaran et al 2015)
|
681. |
Striatal Output Neuron (Mahon, Deniau, Charpier, Delord 2000)
|
682. |
Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)
|
683. |
Striatum D1 Striosome and Matrix Upstates (Prager et al., 2020)
|
684. |
Structure-dynamics relationships in bursting neuronal networks revealed (Mäki-Marttunen et al. 2013)
|
685. |
Studies of stimulus parameters for seizure disruption using NN simulations (Anderson et al. 2007)
|
686. |
Study of augmented Rubin and Terman 2004 deep brain stim. model in Parkinsons (Pascual et al. 2006)
|
687. |
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
|
688. |
Submyelin Potassium accumulation in Subthalamic neuron (STN) axons (Bellinger et al. 2008)
|
689. |
Sympathetic neuron (Wheeler et al 2004)
|
690. |
Sympathetic Preganglionic Neurone (Briant et al. 2014)
|
691. |
Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
|
692. |
Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010)
|
693. |
Synaptic integration by MEC neurons (Justus et al. 2017)
|
694. |
Synaptic integration in a model of granule cells (Gabbiani et al 1994)
|
695. |
Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)
|
696. |
Synchronization by D4 dopamine receptor-mediated phospholipid methylation (Kuznetsova, Deth 2008)
|
697. |
Synchrony by synapse location (McTavish et al. 2012)
|
698. |
Synergistic inhibitory action of oxcarbazepine on INa and IK (Huang et al. 2008)
|
699. |
Synthesis of spatial tuning functions from theta cell spike trains (Welday et al., 2011)
|
700. |
Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020)
|
701. |
Temperature-Dependent Pyloric Pacemaker Kernel (Caplan JS et al., 2014)
|
702. |
Temperature-Sensitive conduction at axon branch points (Westerfield et al 1978)
|
703. |
Temporal decorrelation by intrinsic cellular dynamics (Wang et al 2003)
|
704. |
Thalamic interneuron multicompartment model (Zhu et al. 1999)
|
705. |
Thalamic neuron: Modeling rhythmic neuronal activity (Meuth et al. 2005)
|
706. |
Thalamic reticular neurons: the role of Ca currents (Destexhe et al 1996)
|
707. |
Thalamic transformation of pallidal input (Hadipour-Niktarash 2006)
|
708. |
Thalamocortical loop with delay for investigation of absence epilepsy (Liu et al 2019)
|
709. |
Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
|
710. |
Thalamocortical augmenting response (Bazhenov et al 1998)
|
711. |
Thalamocortical control of propofol phase-amplitude coupling (Soplata et al 2017)
|
712. |
Thalamocortical model of spike and wave seizures (Suffczynski et al. 2004)
|
713. |
Thalamocortical relay neuron models constrained by experiment and optimization (Iavarone et al 2019)
|
714. |
The APP in C-terminal domain alters CA1 neuron firing (Pousinha et al 2019)
|
715. |
The basis of sharp spike onset in standard biophysical models (Telenczuk et al 2017)
|
716. |
The electrodiffusive neuron-extracellular-glia (edNEG) model (Sætra et al. 2021)
|
717. |
The electrodiffusive Pinsky-Rinzel (edPR) model (Sætra et al., 2020)
|
718. |
The microcircuits of striatum in silico (Hjorth et al 2020)
|
719. |
The origin of different spike and wave-like events (Hall et al 2017)
|
720. |
The role of glutamate in neuronal ion homeostasis: spreading depolarization (Hubel et al 2017)
|
721. |
The STN-GPe network; subthalamic nucleus, prototypic GPe, and arkypallidal GPe neurons (Kitano 2023)
|
722. |
The ventricular AP and effects of the isoproterenol-induced cardiac hypertrophy (Sengul et al 2020)
|
723. |
Theta phase precession in a model CA3 place cell (Baker and Olds 2007)
|
724. |
Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit (Ponzi et al. 2023)
|
725. |
Tight junction model of CNS myelinated axons (Devaux and Gow 2008)
|
726. |
Tonic activation of extrasynaptic NMDA-R promotes bistability (Gall & Dupont 2020)
|
727. |
Tonic firing in substantia gelatinosa neurons (Melnick et al 2004)
|
728. |
Tonic neuron in spinal lamina I: prolongation of subthreshold depol. (Prescott and De Koninck 2005)
|
729. |
Touch Sensory Cells (T Cells) of the Leech (Cataldo et al. 2004) (Scuri et al. 2007)
|
730. |
Transfer properties of Neuronal Dendrites (Korogod et al 1998)
|
731. |
TRPM8-dependent dynamic response in cold thermoreceptors (Olivares et al. 2015)
|
732. |
TTX-R Na+ current effect on cell response (Herzog et al 2001)
|
733. |
TTX-R Na+ current effect on cell response (Herzog et al 2001) (MATLAB)
|
734. |
Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006)
|
735. |
Two populations of excitatory neurons in the superficial retrosplenial cortex (Brennan et al 2020)
|
736. |
Two-neuron conductance-based model with dynamic ion concentrations to study NaV1.1 channel mutations
|
737. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|
738. |
Using Strahler's analysis to reduce realistic models (Marasco et al, 2013)
|
739. |
Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++)
|
740. |
Ventricular cell model (Luo Rudy dynamic model) (Luo Rudy 1994) used in (Wang et al 2006) (XPP)
|
741. |
Ventromedial Thalamocortical Neuron (Bichler et al 2021)
|
742. |
Visual Cortex Neurons: Dendritic computations (Archie, Mel 2000)
|
743. |
Visual physiology of the layer 4 cortical circuit in silico (Arkhipov et al 2018)
|
744. |
Voltage- and Branch-specific Climbing Fiber Responses in Purkinje Cells (Zang et al 2018)
|
745. |
Voltage-gated conductances can counteract filtering effect of membrane capacitance (Heras et al '16)
|
746. |
Vomeronasal sensory neuron (Shimazaki et al 2006)
|
747. |
VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017)
|
748. |
Xenopus Myelinated Neuron (Frankenhaeuser, Huxley 1964)
|
749. |
Zebrafish Mauthner-cell model (Watanabe et al 2017)
|
750. |
Zonisamide-induced inhibition of the firing of APs in hippocampal neurons (Huang et al. 2007)
|