Models that contain the Model Concept : Olfaction

(Olfaction is the process of smelling: molecules binding to olfactory receptors produces electrical activity in nervous systems.)
Re-display model names without descriptions
    Models   Description
1.  2D model of olfactory bulb gamma oscillations (Li and Cleland 2017)
This is a biophysical model of the olfactory bulb (OB) that contains three types of neurons: mitral cells, granule cells and periglomerular cells. The model is used to study the cellular and synaptic mechanisms of OB gamma oscillations. We concluded that OB gamma oscillations can be best modeled by the coupled oscillator architecture termed pyramidal resonance inhibition network gamma (PRING).
2.  3D model of the olfactory bulb (Migliore et al. 2014)
This entry contains a link to a full HD version of movie 1 and the NEURON code of the paper: "Distributed organization of a brain microcircuit analysed by three-dimensional modeling: the olfactory bulb" by M Migliore, F Cavarretta, ML Hines, and GM Shepherd.
3.  3D olfactory bulb: operators (Migliore et al, 2015)
"... Using a 3D model of mitral and granule cell interactions supported by experimental findings, combined with a matrix-based representation of glomerular operations, we identify the mechanisms for forming one or more glomerular units in response to a given odor, how and to what extent the glomerular units interfere or interact with each other during learning, their computational role within the olfactory bulb microcircuit, and how their actions can be formalized into a theoretical framework in which the olfactory bulb can be considered to contain "odor operators" unique to each individual. ..."
4.  A model of antennal lobe of bee (Chen JY et al. 2015)
" ... Here we use calcium imaging to reveal how responses across antennal lobe projection neurons change after association of an input odor with appetitive reinforcement. After appetitive conditioning to 1-hexanol, the representation of an odor mixture containing 1-hexanol becomes more similar to this odor and less similar to the background odor acetophenone. We then apply computational modeling to investigate how changes in synaptic connectivity can account for the observed plasticity. Our study suggests that experience-dependent modulation of inhibitory interactions in the antennal lobe aids perception of salient odor components mixed with behaviorally irrelevant background odors."
5.  A network of AOB mitral cells that produces infra-slow bursting (Zylbertal et al. 2017)
Infra-slow rhythmic neuronal activity with very long (> 10 s) period duration was described in many brain areas but little is known about the role of this activity and the mechanisms that produce it. Here we combine experimental and computational methods to show that synchronous infra-slow bursting activity in mitral cells of the mouse accessory olfactory bulb (AOB) emerges from interplay between intracellular dynamics and network connectivity. In this novel mechanism, slow intracellular Na+ dynamics endow AOB mitral cells with a weak tendency to burst, which is further enhanced and stabilized by chemical and electrical synapses between them. Combined with the unique topology of the AOB network, infra-slow bursting enables integration and binding of multiple chemosensory stimuli over prolonged time scale. The example protocol simulates a two-glomeruli network with a single shared cell. Although each glomerulus is stimulated at a different time point, the activity of the entire population becomes synchronous (see paper Fig. 8)
6.  A theory of ongoing activity in V1 (Goldberg et al 2004)
Ongoing spontaneous activity in the cerebral cortex exhibits complex spatiotemporal patterns in the absence of sensory stimuli. To elucidate the nature of this ongoing activity, we present a theoretical treatment of two contrasting scenarios of cortical dynamics: (1) fluctuations about a single background state and (2) wandering among multiple “attractor” states, which encode a single or several stimulus features. Studying simplified network rate models of the primary visual cortex (V1), we show that the single state scenario is characterized by fast and high-dimensional Gaussian-like fluctuations, whereas in the multiple state scenario the fluctuations are slow, low dimensional, and highly non-Gaussian. Studying a more realistic model that incorporates correlations in the feedforward input, spatially restricted cortical interactions, and an experimentally derived layout of pinwheels, we show that recent optical-imaging data of ongoing activity in V1 are consistent with the presence of either a single background state or multiple attractor states encoding many features.
7.  A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
This is a two-layer biophysical olfactory bulb (OB) network model to study cholinergic neuromodulation. Simulations show that nicotinic receptor activation sharpens mitral cell receptive field, while muscarinic receptor activation enhances network synchrony and gamma oscillations. This general model suggests that the roles of nicotinic and muscarinic receptors in OB are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations.
8.  ACh modulation in olfactory bulb and piriform cortex (de Almeida et al. 2013;Devore S, et al. 2014)
This matlab code was used in the papers de Almeida, Idiart and Linster, (2013), Devore S, de Almeida L, Linster C (2014) . This work uses a computational model of the OB and PC and their common cholinergic inputs to investigate how bulbar cholinergic modulation affects cortical odor processing.
9.  Action potential initiation in the olfactory mitral cell (Shen et al 1999)
Mitral cell model with standard parameters for the paper: Shen, G.Y., Chen, W. R., Midtgaard, J., Shepherd, G.M., and Hines, M.L. (1999) Computational Analysis of Action Potential Initiation in Mitral Cell Soma and Dendrites Based on Dual Patch Recordings. Journal of Neurophysiology 82:3006. Contact Michael.Hines@yale.edu if you have any questions about the implementation of the model.
10.  AOB mitral cell: persistent activity without feedback (Zylbertal et al., 2015)
Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. This is a realistic conductance-based model that was constructed using the detailed morphology of a single typical accessory olfactory bulb (AOB) mitral cell for which the electrophysiological properties were characterized.
11.  Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011)
Inward and outward currents of the olfactory bulb juxtaglomerular cells are characterized in the experiments and modeling in these two Masurkar and Chen 2011 papers.
12.  Compartmental model of a mitral cell (Popovic et al. 2005)
Usage of a morphologically realistic compartmental model of a mitral cell and data obtained from whole-cell patch-clamp and voltage-imaging experiments in order to explore passive parameter space in which reported low EPSP attenuation is observed.
13.  Competition model of pheromone ratio detection (Zavada et al. 2011)
For some closely related sympatric moth species, recognizing a specific pheromone component concentration ratio is essential for mating success. We propose and test a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which. (3) longer durations of the competition process between LNs did not result in higher recognition accuracy.
14.  Computing with neural synchrony (Brette 2012)
"... In a heterogeneous neural population, it appears that synchrony patterns represent structure or sensory invariants in stimuli, which can then be detected by postsynaptic neurons. The required neural circuitry can spontaneously emerge with spike-timing-dependent plasticity. Using examples in different sensory modalities, I show that this allows simple neural circuits to extract relevant information from realistic sensory stimuli, for example to identify a fluctuating odor in the presence of distractors. ..."
15.  Continuum model of tubulin-driven neurite elongation (Graham et al 2006)
This model investigates the elongation over time of a single developing neurite (axon or dendrite). Our neurite growth model describes the elongation of a single,unbranched neurite in terms of the rate of extension of the microtubule cytoskeleton. The cytoskeleton is not explicitly modelled, but its construction is assumed to depend on the available free tubulin at the growing neurite tip.
16.  Cortex learning models (Weber at al. 2006, Weber and Triesch, 2006, Weber and Wermter 2006/7)
A simulator and the configuration files for three publications are provided. First, "A hybrid generative and predictive model of the motor cortex" (Weber at al. 2006) which uses reinforcement learning to set up a toy action scheme, then uses unsupervised learning to "copy" the learnt action, and an attractor network to predict the hidden code of the unsupervised network. Second, "A Self-Organizing Map of Sigma-Pi Units" (Weber and Wermter 2006/7) learns frame of reference transformations on population codes in an unsupervised manner. Third, "A possible representation of reward in the learning of saccades" (Weber and Triesch, 2006) implements saccade learning with two possible learning schemes for horizontal and vertical saccades, respectively.
17.  Cortical Layer 5b pyr. cell with [Na+]i mechanisms, from Hay et al 2011 (Zylbertal et al 2017)
" ... Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca(2+) spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells as well as mechanisms that are sensitive to morphological changes. ..."
18.  Dendro-dendritic synaptic circuit (Shepherd Brayton 1979)
A NEURON simulation has been created to model the passive spread of an EPSP from a mitral cell synapse on a granule cell spine. The EPSP was shown to propagate subthreshold through the dendritic shaft into an adjacent spine with significant amplitude (figure 2B).
19.  Distinct current modules shape cellular dynamics in model neurons (Alturki et al 2016)
" ... We hypothesized that currents are grouped into distinct modules that shape specific neuronal characteristics or signatures, such as resting potential, sub-threshold oscillations, and spiking waveforms, for several classes of neurons. For such a grouping to occur, the currents within one module should have minimal functional interference with currents belonging to other modules. This condition is satisfied if the gating functions of currents in the same module are grouped together on the voltage axis; in contrast, such functions are segregated along the voltage axis for currents belonging to different modules. We tested this hypothesis using four published example case models and found it to be valid for these classes of neurons. ..."
20.  Dynamical model of olfactory bulb mitral cell (Rubin, Cleland 2006)
This four-compartment mitral cell exhibits endogenous subthreshold oscillations, phase resetting, and evoked spike phasing properties as described in electrophysiological studies of mitral cells. It is derived from the prior work of Davison et al (2000) and Bhalla and Bower (1993). See readme.txt for details.
21.  Effect of polysynaptic facilitaiton between piriform-hippocampal network stages (Trieu et al 2015)
This is a model of a multistage network with stages representing regions and synaptic contacts from the olfactory cortex to region CA1 of the hippocampus in Brian2 spiking neural network simulator (Trieu et al 2015). It is primarily designed to assess how synaptic facilitation at multiple stages in response to theta firing changes the output of the network. Further developments will be posted at: github.com/cdcox/multistage_network This model was prepared by Conor D Cox, University of California, Irvine For questions please contact Conor at cdcox1@gmail.com
22.  Emergence of Connectivity Motifs in Networks of Model Neurons (Vasilaki, Giugliano 2014)
Recent evidence suggests that short-term dynamics of excitatory synaptic transmission is correlated to stereotypical connectivity motifs. We show that these connectivity motifs emerge in networks of model neurons, from the interactions between short-term synaptic dynamics (SD) and long-term spike-timing dependent plasticity (STDP).
23.  Ephaptic interactions in olfactory nerve (Bokil et al 2001)
Bokil, H., Laaris, N., Blinder, K., Ennis, M., and Keller, A. (2001) Ephaptic interactions in the mammalian olfactory system. J. Neurosci. 21:RC173(1-5)
24.  Functional structure of mitral cell dendritic tuft (Djurisic et al. 2008)
The computational modeling component of Djurisic et al. 2008 addressed two primary questions: whether amplification by active currents is necessary to explain the relatively mild attenuation suffered by tuft EPSPs spreading along the primary dendrite to the soma; what accounts for the relatively uniform peak EPSP amplitude throughout the tuft. These simulations show that passive spread from tuft to soma is sufficient to yield the low attenuation of tuft EPSPs, and that random distribution of a biologically plausible number of excitatory synapses throughout the tuft can produce the experimentally observed uniformity of depolarization.
25.  Gamma-beta alternation in the olfactory bulb (David, Fourcaud-Trocmé et al., 2015)
This model, a simplified olfactory bulb network with mitral and granule cells, proposes a framework for two regimes of oscillation in the olfactory bulb: 1 - a weak inhibition regime (with no granule spike) where the network oscillates in the gamma (40-90Hz) band 2 - a strong inhibition regime (with granule spikes) where the network oscillates in the beta (15-30Hz) band. Slow modulations of sensory and centrifugal inputs, phase shifted by a quarter of cycle, possibly combined with short term depression of the mitral to granule AMPA synapse, allows the network to alternate between the two regimes as observed in anesthetized animals.
26.  Granule Cells of the Olfactory Bulb (Simoes_De_Souza et al. 2014)
Electrical responses of three classes of granule cells of the olfactory bulb to synaptic activation in different dendritic locations. The constructed models were based on morphological detailed compartmental reconstructions of three granule cell classes of the olfactory bulb with active dendrites described by Bhalla and Bower (J. Neurophysiol. 69: 1948-1965, 1993) and dendritic spine distributions described by Woolf et al. (J. Neurosci. 11: 1837-1854, 1991). The computational studies with the model neurons showed that different quantities of spines have to be activated in each dendritic region to induce an action potential, which always was originated in the active terminal dendrites, independently of the location of the stimuli and the morphology of the dendritic tree.
27.  Honey bee receptor and antennal lobe model (Chan et al 2018)
This model consists of the full repertoire of honey bees' receptors and glomeruli. It fits to the statistics of data from Galizia et al (1999) and Gremiaux et al (2012). Parameters can be changed to (statistically) fit to other data sets.
28.  Hopfield and Brody model (Hopfield, Brody 2000)
NEURON implementation of the Hopfield and Brody model from the papers: JJ Hopfield and CD Brody (2000) JJ Hopfield and CD Brody (2001). Instructions are provided in the below readme.txt file.
29.  Infraslow intrinsic rhythmogenesis in a subset of AOB projection neurons (Gorin et al 2016)
We investigated patterns of spontaneous neuronal activity in mouse accessory olfactory bulb mitral cells, the direct neural link between vomeronasal sensory input and limbic output. Both in vitro and in vivo, we identify a subpopulation of mitral cells that exhibit slow stereotypical rhythmic discharge. In intrinsically rhythmogenic neurons, these periodic activity patterns are maintained in absence of fast synaptic drive. The physiological mechanism underlying mitral cell autorhythmicity involves cyclic activation of three interdependent ionic conductances: subthreshold persistent Na(+) current, R-type Ca(2+) current, and Ca(2+)-activated big conductance K(+) current. Together, the interplay of these distinct conductances triggers infraslow intrinsic oscillations with remarkable periodicity, a default output state likely to affect sensory processing in limbic circuits. The model reproduces the intrinsic firing in a reconstructed single AOB mitral cell with ion channels kinetics fitted to experimental measurements of their steady state and time course.
30.  Kenyon cells in the honeybee (Wustenberg et al 2004)
The mushroom body of the insect brain is an important locus for olfactory information processing and associative learning. ... Current- and voltage-clamp analyses were performed on cultured Kenyon cells from honeybees. ... Voltage-clamp analyses characterized a fast transient Na+ current (INa), a delayed rectifier K+ current (IK,V) and a fast transient K+ current (IK,A). Using the neurosimulator SNNAP, a Hodgkin-Huxley type model was developed and used to investigate the roles of the different currents during spiking. The model led to the prediction of a slow transient outward current (IK,ST) that was subsequently identified by reevaluating the voltage-clamp data. Simulations indicated that the primary currents that underlie spiking are INa and IK,V, whereas IK,A and IK,ST primarily determined the responsiveness of the model to stimuli such constant or oscillatory injections of current. See paper for more details.
31.  Large scale model of the olfactory bulb (Yu et al., 2013)
The readme file currently contains links to the results for all the 72 odors investigated in the paper, and the movie showing the network activity during learning of odor k3-3 (an aliphatic ketone).
32.  Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
Mitral cells, the principal output neurons of the olfactory bulb, receive direct synaptic activation from primary sensory neurons. Shunting inhibitory inputs delivered by granule cell interneurons onto mitral cell lateral dendrites are believed to influence spike timing and underlie coordinated field potential oscillations. Lateral dendritic shunt conductances delayed spiking to a degree dependent on both their electrotonic distance and phase of onset. Recurrent inhibition significantly narrowed the distribution of mitral cell spike times, illustrating a tendency towards coordinated synchronous activity. This result suggests an essential role for early mechanisms of temporal coordination in olfaction. The model was adapted from Davison et al, 2003, but include additional noise mechanisms, long lateral dendrite, and specific synaptic point processes.
33.  Locust olfactory network with GGN and full KC population in the mushroom body (Ray et al 2020)
We reconstructed the GGN morphology from 3D confocal image stack, and built a passive model based on the morphology to study signal attenuation across this giant neuron. In order to study the effect of feedback inhibition from this cell on odor information processing, we created a model of the olfactory network in the locust mushroom body with 50,000 KCs reciprocally connected to this neuron. Finally, we added a model of the IG to reproduce in vivo odor responses in GGN.
34.  Mitral cell activity gating by respiration and inhibition in an olfactory bulb NN (Short et al 2016)
To explore interactions between respiration, inhibition, and olfaction, experiments using light to active channel rhodopsin in sensory neurons expressing Olfactory Marker Protein were performed in mice and modeled in silico. This archive contains NEURON models that were run on parallel computers to explore the interactions between varying strengths of respiratory activity and olfactory sensory neuron input and the roles of periglomerular, granule, and external tufted cells in shaping mitral cell responses.
35.  Model for concentration invariant odor coding based on primacy hypothesis (Wilson et al 2017)
"... Here we propose that, in olfaction, a small and relatively stable set comprised of the earliest activated receptors forms a code for concentration-invariant odor identity. One prediction of this “primacy coding” scheme is that decisions based on odor identity can be made solely using early odor-evoked neural activity. Using an optogenetic masking paradigm, we define the sensory integration time necessary for odor identification and demonstrate that animals can use information occurring <100ms after inhalation onset to identify odors. ... We propose a computational model demonstrating how such a code can be read by neural circuits of the olfactory system."
36.  Model of calcium oscillations in olfactory cilia (Reidl et al. 2006)
Simulation of experiments on olfactory receptor neurons (ORNs). Focussing on the negative feedback that calcium (through calmodulin) has on its own influx through CNG channels, this model is able to reproduce both calcium oscillations as well as adaptation behaviour as seen in experiments done with ORNs.
37.  Model of repetitive firing in Grueneberg ganglion olfactory neurons (Liu et al., 2012)
This model is constructed based on properties of Na+ and K+ currents observed in whole-cell patch clamp recordings of mouse Grueneberg ganglion neurons in acute slices. Two distinct Na+ conductances representing the TTX-sensitive and TTX-resistant currents and one delayed rectifier K+ currrent are included. By modulating the maximal conductances of Na+ currents, one can reproduce the regular, phasic, and sporadic patterns of repetitive firing found in the patch clamp experiments.
38.  Multiscale model of olfactory receptor neuron in mouse (Dougherty 2009)
Collection of XPP (.ode) files simulating the signal transduction (slow) and action potential (fast) currents in the olfactory receptor neuron of mouse. Collection contains model configured for dual odorant pulse delivery and model configured for prolonged odorant delivery. For those interested more in transduction processes, each whole cell recording model comes with a counter part file configured to show just the slow transduction current for ease of use and convenience. These transduction-only models typically run faster than the full multi-scale models but do not demonstrate action potentials.
39.  Na+ Signals in olfactory bulb neurons (granule cell model) (Ona-Jodar et al. 2017)
Simulations of Na+ during action potentials in granule cells replicated the behaviors observed in experiments.
40.  Neurogenesis in the olfactory bulb controlled by top-down input (Adams et al 2018)
This code implements a model for adult neurogenesis of granule cells in the olfactory system. The granule cells receive sensory input via the mitral cells and top-down input from a cortical area. That cortical area also receives olfactory input from the mitral cells as well as contextual input. This plasticity leads to a network structure consisting of bidirectional connections between bulbar and cortical odor representations. The top-down input enhances stimulus discrimination based on contextual input.
41.  Odor supported place cell model and goal navigation in rodents (Kulvicius et al. 2008)
" ... Here we model odor supported place cells by using a simple feed-forward network and analyze the impact of olfactory cues on place cell formation and spatial navigation. The obtained place cells are used to solve a goal navigation task by a novel mechanism based on self-marking by odor patches combined with a Q-learning algorithm. We also analyze the impact of place cell remapping on goal directed behavior when switching between two environments. ..."
42.  Olfactory bulb cluster formation (Migliore et al. 2010)
Functional roles of distributed synaptic clusters in the mitral-granule cell network of the olfactory bulb.
43.  Olfactory bulb granule cell: effects of odor deprivation (Saghatelyan et al 2005)
The model supports the experimental findings on the effects of postnatal odor deprivation, and shows that a -10mV shift in the Na activation or a reduction in the dendritic length of newborn GC could independently explain the observed increase in excitability.
44.  Olfactory bulb juxtaglomerular models (Carey et al., 2015)
" ...We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared to recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. ..."
45.  Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
A detailed network model of the dual-layer dendro-dendritic inhibitory microcircuits in the rat olfactory bulb comprising compartmental mitral, granule and PG cells developed by Aditya Gilra, Upinder S. Bhalla (2015). All cell morphologies and network connections are in NeuroML v1.8.0. PG and granule cell channels and synapses are also in NeuroML v1.8.0. Mitral cell channels and synapses are in native python.
46.  Olfactory bulb mitral and granule cell column formation (Migliore et al. 2007)
In the olfactory bulb, the processing units for odor discrimination are believed to involve dendrodendritic synaptic interactions between mitral and granule cells. There is increasing anatomical evidence that these cells are organized in columns, and that the columns processing a given odor are arranged in widely distributed arrays. Experimental evidence is lacking on the underlying learning mechanisms for how these columns and arrays are formed. We have used a simplified realistic circuit model to test the hypothesis that distributed connectivity can self-organize through an activity-dependent dendrodendritic synaptic mechanism. The results point to action potentials propagating in the mitral cell lateral dendrites as playing a critical role in this mechanism, and suggest a novel and robust learning mechanism for the development of distributed processing units in a cortical structure.
47.  Olfactory bulb mitral and granule cell: dendrodendritic microcircuits (Migliore and Shepherd 2008)
This model shows how backpropagating action potentials in the long lateral dendrites of mitral cells, together with granule cell actions on mitral cells within narrow columns forming glomerular units, can provide a mechanism to activate strong local inhibition between arbitrarily distant mitral cells. The simulations predict a new role for the dendrodendritic synapses in the multicolumnar organization of the granule cells.
48.  Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
In a network of 6 mitral cells connected by gap junction in the apical dendrite tuft, continuous current injections of 0.06 nA are injected into 20 locations in the apical tufts of two of the mitral cells. The current injections into one of the cells starts 10 ms after the other to generate asynchronous firing in the cells (Migliore et al. 2005 protocol). Firing of the cells is asynchronous for the first 120 ms. However after the burst firing phase is completed the firing in all cells becomes synchronous.
49.  Olfactory bulb mitral cell: synchronization by gap junctions (Migliore et al 2005)
In a realistic model of two electrically connected mitral cells, the paper shows that the somatically-measured experimental properties of Gap Junctions (GJs) may correspond to a variety of different local coupling strengths and dendritic distributions of GJs in the tuft. The model suggests that the propagation of the GJ-induced local tuft depolarization is a major mechanim for intraglomerular synchronization of mitral cells.
50.  Olfactory Bulb mitral-granule network generates beta oscillations (Osinski & Kay 2016)
This model of the dendrodendritic mitral-granule synaptic network generates gamma and beta oscillations as a function of the granule cell excitability, which is represented by the granule cell resting membrane potential.
51.  Olfactory Bulb Network (Davison et al 2003)
A biologically-detailed model of the mammalian olfactory bulb, incorporating the mitral and granule cells and the dendrodendritic synapses between them. The results of simulation experiments with electrical stimulation agree closely in most details with published experimental data. The model predicts that the time course of dendrodendritic inhibition is dependent on the network connectivity as well as on the intrinsic parameters of the synapses. In response to simulated odor stimulation, strongly activated mitral cells tend to suppress neighboring cells, the mitral cells readily synchronize their firing, and increasing the stimulus intensity increases the degree of synchronization. For more details, see the reference below.
52.  Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)
This model implements a network of 100 mitral cells connected with asynchronous inhibitory "synapses" that is meant to reproduce the GABAergic transmission of ensembles of connected granule cells. For appropriate parameters of this special synapse the model generates gamma oscillations with properties very similar to what is observed in olfactory bulb slices (See Bathellier et al. 2006, Lagier et al. 2007). Mitral cells are modeled as single compartment neurons with a small number of different voltage gated channels. Parameters were tuned to reproduce the fast subthreshold oscillation of the membrane potential observed experimentally (see Desmaisons et al. 1999).
53.  Olfactory bulb network: neurogenetic restructuring and odor decorrelation (Chow et al. 2012)
Adult neurogenesis in the olfactory bulb has been shown experimentally to contribute to perceptual learning. Using a computational network model we show that fundamental aspects of the adult neurogenesis observed in the olfactory bulb -- the persistent addition of new inhibitory granule cells to the network, their activity-dependent survival, and the reciprocal character of their synapses with the principal mitral cells -- are sufficient to restructure the network and to alter its encoding of odor stimuli adaptively so as to reduce the correlations between the bulbar representations of similar stimuli. The model captures the experimentally observed role of neurogenesis in perceptual learning and the enhanced response of young granule cells to novel stimuli. Moreover, it makes specific predictions for the type of odor enrichment that should be effective in enhancing the ability of animals to discriminate similar odor mixtures. NSF grant DMS-0719944.
54.  Olfactory Computations in Mitral-Granule cell circuits (Migliore & McTavish 2013)
Model files for the entry "Olfactory Computations in Mitral-Granule Cell Circuits" of the Springer Encyclopedia of Computational Neuroscience by Michele Migliore and Tom Mctavish. The simulations illustrate two typical Mitral-Granule cell circuits in the olfactory bulb of vertebrates: distance-independent lateral inhibition and gating effects.
55.  Olfactory Mitral Cell (Bhalla, Bower 1993)
This is a conversion to NEURON of the mitral cell model described in Bhalla and Bower (1993). The original model was written in GENESIS and is available by joining BABEL, the GENESIS users' group here http://www.genesis-sim.org/GENESIS/babel.html
56.  Olfactory Mitral Cell (Davison et al 2000)
A four-compartment model of a mammalian olfactory bulb mitral cell, reduced from the complex 286-compartment model described by Bhalla and Bower (1993). The compartments are soma/axon, secondary dendrites, primary dendrite shaft and primary dendrite tuft. The reduced model runs 75 or more times faster than the full model, making its use in large, realistic network models of the olfactory bulb practical.
57.  Olfactory Mitral cell: AP initiation modes (Chen et al 2002)
The mitral cell primary dendrite plays an important role in transmitting distal olfactory nerve input from olfactory glomerulus to the soma-axon initial segment. To understand how dendritic active properties are involved in this transmission, we have combined dual soma and dendritic patch recordings with computational modeling to analyze action-potential initiation and propagation in the primary dendrite.
58.  Olfactory Mitral Cell: I-A and I-K currents (Wang et al 1996)
NEURON mod files for the I-A and I-K currents from the paper: X.Y. Wang, J.S. McKenzie and R.E. Kemm, Whole-cell K+ currents in identified olfactory bulb output neurones of rats. J Physiol. 1996 490.1:63-77. Please see the readme.txt included in the model file for more information.
59.  Olfactory Periglomerular Cells: I-h kinetics (Cadetti, Belluzzi 2001)
NEURON mod files for the Ih current from the paper: Cadetti L, Belluzzi O. Hyperpolarisation-activated current in glomerular cells of the rat olfactory bulb. Neuroreport 12:3117-20 (2001).
60.  Olfactory receptor neuron model (Dougherty et al 2005)
Demonstration of ORN model by Dougherty, Wright and Yew (2005) PNAS 102: 10415-10420. This program, dwy_pnas_demo2, simulates the transduction current response of a single olfactory receptor neuron being stimulated by an odorant plume. The program is interactive in that a user can tweak parameter values and stimulus conditions. Also, users can save a configuration in a mat-file or export all aspects to a directory of text files. These text files can be read by other programs. There is also an import facility for importing text files from a directory that allows the user to specify their own data, pulses and parameters.
61.  Online learning model of olfactory bulb external plexiform layer network (Imam & Cleland 2020)
This model illustrates the rapid online learning of odor representations, and their recognition despite high levels of interference (other competing odorants), in a model of the olfactory bulb external plexiform layer (EPL) network. The computational principles embedded in this model are based on the those developed in the biophysical models of Li and Cleland (2013, 2017). This is a standard Python version of a model written for Intel's Loihi neuromorphic hardware platform (The Loihi code is available at https://github.com/intel-nrc-ecosystem/models/tree/master/official/epl).
62.  Oscillation and coding in a proposed NN model of insect olfaction (Horcholle-Bossavit et al. 2007)
"For the analysis of coding mechanisms in the insect olfactory system, a fully connected network of synchronously updated McCulloch and Pitts neurons (MC-P type) was (previously) developed. ... Considering the update time as an intrinsic clock, this “Dynamic Neural Filter” (DNF), which maps regions of input space into spatio-temporal sequences of neuronal activity, is able to produce exact binary codes extracted from the synchronized activities recorded at the level of projection neurons (PN) in the locust antennal lobe (AL) in response to different odors ... We find synaptic matrices which lead to both the emergence of robust oscillations and spatio-temporal patterns, using a formal criterion, based on a Normalized Euclidian Distance (NED), in order to measure the use of the temporal dimension as a coding dimension by the DNF. Similarly to biological PN, the activity of excitatory neurons in the model can be both phase-locked to different cycles of oscillations which (is reminiscent of the) local field potential (LFP), and nevertheless exhibit dynamic behavior complex enough to be the basis of spatio-temporal codes."
63.  Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)
"[...] experimental findings suggest that MC and mTC may encode parallel and complementary odor representations. We have analyzed the functional roles of these pathways by using a morphologically and physiologically realistic three-dimensional model to explore the MC and mTC microcircuits in the glomerular layer and deeper plexiform layers. [...]"
64.  Scaling self-organizing maps to model large cortical networks (Bednar et al 2004)
Self-organizing computational models with specific intracortical connections can explain many functional features of visual cortex, such as topographic orientation and ocular dominance maps. ... This article introduces two techniques that make large simulations practical. First, we show how parameter scaling equations can be derived for laterally connected self-organizing models. These equations result in quantitatively equivalent maps over a wide range of simulation sizes, making it possible to debug small simulations and then scale them up only when needed. ... Second, we use parameter scaling to implement a new growing map method called GLISSOM, which dramatically reduces the memory and computational requirements of large self-organizing networks. See paper for more and details.
65.  Self-organized olfactory pattern recognition (Kaplan & Lansner 2014)
" ... We present a large-scale network model with single and multi-compartmental Hodgkin–Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. ... The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian–Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures."
66.  Simulations of oscillations in piriform cortex (Wilson & Bower 1992)
"1. A large-scale computer model of the piriform cortex was constructed on the basis of the known anatomic and physiological organization of this region. 2. The oscillatory field potential and electroencephalographic (EEG) activity generated by the model was compared with actual physiological results. The model was able to produce patterns of activity similar to those recorded physiologically in response to both weak and strong electrical shocks to the afferent input. The model also generated activity patterns similar to EEGs recorded in behaving animals. 3. ..."
67.  Single compartment Dorsal Lateral Medium Spiny Neuron w/ NMDA and AMPA (Biddell and Johnson 2013)
A biophysical single compartment model of the dorsal lateral striatum medium spiny neuron is presented here. The model is an implementation then adaptation of a previously described model (Mahon et al. 2002). The model has been adapted to include NMDA and AMPA receptor models that have been fit to dorsal lateral striatal neurons. The receptor models allow for excitation by other neuron models.
68.  Stochastic model of the olfactory cilium transduction and adaptation (Antunes et al 2014)
" ... In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). ... These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca2+)-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca2+, and it simulates the EOG (electroolfactogram) results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca2+ response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control GPCR cycling and tune the levels of second messengers in OSNs, and not only by CNG channel desensitization as previously thought. "
69.  Synchrony by synapse location (McTavish et al. 2012)
This model considers synchrony between mitral cells induced via shared granule cell interneurons while taking into account the spatial constraints of the system. In particular, since inhibitory inputs decay passively along the lateral dendrites, this model demonstrates that an optimal arrangement of the inhibitory synapses will be near the cell bodies of the relevant mitral cells.
70.  Theoretical reconstrucion of field potentials and dendrodendritic synaptic...(Rall & Shepherd 1968)
This was the first application of compartmental modeling using the Rall approach to brain neurons. It combined multicompartmental representation of a mitral cell and a granule cell with the first Hodgkin-Huxley-like action potential to model antidromic activation of the mitral cell, followed by synaptic excitation of the granule cell and synaptic inhibition of the mitral cell. Combined with reconstruction of the field potentials generated around these neurons, and detailed comparisons with single cell recordings, it led to prediction of dendrodendritic interactions mediating self and lateral inhibition of the mitral cells by the granule cells. It has been regarded as the first computational model of a brain microcircuit (see also Shepherd and Brayton, 1979). Recreation of the model is pending.
71.  Understanding odor information segregation in the olfactory bulb by MC/TCs (Polese et al. 2014)
Odor identification is one of the main tasks of the olfactory system. It is performed almost independently from the concentration of the odor providing a robust recognition. This capacity to ignore concentration information does not preclude the olfactory system from estimating concentration itself. Significant experimental evidence has indicated that the olfactory system is able to infer simultaneously odor identity and intensity. However, it is still unclear at what level or levels of the olfactory pathway this segregation of information occurs. In this work, we study whether this odor information segregation is performed at the input stage of the olfactory bulb: the glomerular layer.

Re-display model names without descriptions