| Models |
1. |
A biophysical model of vestibular ganglion neurons (Hight & Kalluri 2016, Ventura & Kalluri 2018)
|
2. |
A model for a nociceptor terminal and terminal tree (Barkai et al., 2020)
|
3. |
A model for interaural time difference sensitivity in the medial superior olive (Zhou et al 2005)
|
4. |
A model of local field potentials generated by medial superior olive neurons (Goldwyn et al 2014)
|
5. |
A model of ventral Hippocampal CA1 pyramidal neurons of Tg2576 AD mice (Spoleti et al. 2021)
|
6. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
7. |
A set of reduced models of layer 5 pyramidal neurons (Bahl et al. 2012)
|
8. |
A single column thalamocortical network model (Traub et al 2005)
|
9. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
10. |
A unified thalamic model of multiple distinct oscillations (Li, Henriquez and Fröhlich 2017)
|
11. |
Action potential of mouse urinary bladder smooth muscle (Mahapatra et al 2018)
|
12. |
Active dendrites and spike propagation in a hippocampal interneuron (Saraga et al 2003)
|
13. |
Active dendrites shape signaling microdomains in hippocampal neurons (Basak & Narayanan 2018)
|
14. |
Active dendritic integration in robust and precise grid cell firing (Schmidt-Hieber et al 2017)
|
15. |
Activity constraints on stable neuronal or network parameters (Olypher and Calabrese 2007)
|
16. |
Activity dependent changes in motoneurones (Dai Y et al 2002, Gardiner et al 2002)
|
17. |
Activity dependent regulation of pacemaker channels by cAMP (Wang et al 2002)
|
18. |
Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005)
|
19. |
Age-dependent excitability of CA1 pyramidal neurons in APPPS1 Alzheimer's model (Vitale et al 2021)
|
20. |
Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015)
|
21. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460
|
22. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729
|
23. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472352327
|
24. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472421285
|
25. |
Allen Institute: Nr5a1-Cre VISp layer 2/3 473862496
|
26. |
Allen Institute: Nr5a1-Cre VISp layer 4 329322394
|
27. |
Allen Institute: Nr5a1-Cre VISp layer 4 472306544
|
28. |
Allen Institute: Nr5a1-Cre VISp layer 4 472442377
|
29. |
Allen Institute: Nr5a1-Cre VISp layer 4 472451419
|
30. |
Allen Institute: Nr5a1-Cre VISp layer 4 472915634
|
31. |
Allen Institute: Nr5a1-Cre VISp layer 4 473834758
|
32. |
Allen Institute: Nr5a1-Cre VISp layer 4 473863035
|
33. |
Allen Institute: Nr5a1-Cre VISp layer 4 473871429
|
34. |
Allen Institute: Ntsr1-Cre VISp layer 4 472430904
|
35. |
Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616
|
36. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845
|
37. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472349114
|
38. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177
|
39. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774
|
40. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421
|
41. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668
|
42. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074
|
43. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269
|
44. |
Allen Institute: Rbp4-Cre VISp layer 5 472424854
|
45. |
Allen Institute: Rbp4-Cre VISp layer 6a 473871592
|
46. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472299294
|
47. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472434498
|
48. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510
|
49. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 471087975
|
50. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 473561660
|
51. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877
|
52. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533
|
53. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107
|
54. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456
|
55. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 5 472306460
|
56. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704
|
57. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762
|
58. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845
|
59. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
|
60. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509
|
61. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578
|
62. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773
|
63. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 471086533
|
64. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676
|
65. |
Allen Institute: Sst-IRES-Cre VISp layer 4 472304539
|
66. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472299363
|
67. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472450023
|
68. |
Allen Institute: Sst-IRES-Cre VISp layer 5 473835796
|
69. |
Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759
|
70. |
Alpha rhythm in vitro visual cortex (Traub et al 2020)
|
71. |
Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)
|
72. |
Amyloid-beta effects on release probability and integration at CA3-CA1 synapses (Romani et al. 2013)
|
73. |
An ion-based model for swelling of neurons and astrocytes (Hubel & Ullah 2016)
|
74. |
Anoxic depolarization, recovery: effect of brain regions and extracellular space (Hubel et al. 2016)
|
75. |
AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008)
|
76. |
Apical Length Governs Computational Diversity of Layer 5 Pyramidal Neurons (Galloni et al 2020)
|
77. |
Axon-somatic back-propagation in a detailed model of cat spinal motoneuron (Balbi et al, 2015)
|
78. |
Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008)
|
79. |
Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008)
|
80. |
BCM-like synaptic plasticity with conductance-based models (Narayanan Johnston, 2010)
|
81. |
Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
|
82. |
Bursting activity of neuron R15 in Aplysia (Canavier et al 1991, Butera et al 1995)
|
83. |
Bursting and resonance in cerebellar granule cells (D'Angelo et al. 2001)
|
84. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
85. |
CA1 network model for place cell dynamics (Turi et al 2019)
|
86. |
CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2020)
|
87. |
CA1 pyramidal neuron (Combe et al 2018)
|
88. |
CA1 pyramidal neuron synaptic integration (Li and Ascoli 2006, 2008)
|
89. |
CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003)
|
90. |
CA1 pyramidal neuron: action potential backpropagation (Gasparini & Migliore 2015)
|
91. |
CA1 pyramidal neuron: calculation of MRI signals (Cassara et al. 2008)
|
92. |
CA1 pyramidal neuron: dendritic Ca2+ inhibition (Muellner et al. 2015)
|
93. |
CA1 pyramidal neuron: dendritic spike initiation (Gasparini et al 2004)
|
94. |
CA1 pyramidal neuron: depolarization block (Bianchi et al. 2012)
|
95. |
CA1 pyramidal neuron: effects of Ih on distal inputs (Migliore et al 2004)
|
96. |
CA1 pyramidal neuron: effects of Lamotrigine on dendritic excitability (Poolos et al 2002)
|
97. |
CA1 pyramidal neuron: h channel-dependent deficit of theta oscill. resonance (Marcelin et al. 2008)
|
98. |
CA1 pyramidal neuron: Ih current (Migliore et al. 2012)
|
99. |
CA1 pyramidal neuron: integration of subthreshold inputs from PP and SC (Migliore 2003)
|
100. |
CA1 pyramidal neuron: nonlinear a5-GABAAR controls synaptic NMDAR activation (Schulz et al 2018)
|
101. |
CA1 pyramidal neuron: Persistent Na current mediates steep synaptic amplification (Hsu et al 2018)
|
102. |
CA1 pyramidal neuron: rebound spiking (Ascoli et al.2010)
|
103. |
Ca1 pyramidal neuron: reduction model (Marasco et al. 2012)
|
104. |
CA1 pyramidal neuron: schizophrenic behavior (Migliore et al. 2011)
|
105. |
CA1 pyramidal neuron: signal propagation in oblique dendrites (Migliore et al 2005)
|
106. |
CA1 Pyramidal Neuron: slow Na+ inactivation (Migliore 1996)
|
107. |
CA1 pyramidal neurons: binding properties and the magical number 7 (Migliore et al. 2008)
|
108. |
CA1 pyramidal neurons: effect of external electric field from power lines (Cavarretta et al. 2014)
|
109. |
CA1 pyramidal neurons: effects of a Kv7.2 mutation (Miceli et al. 2009)
|
110. |
CA1 pyramidal neurons: effects of Alzheimer (Culmone and Migliore 2012)
|
111. |
CA1 pyramidal neurons: effects of Kv7 (M-) channels on synaptic integration (Shah et al. 2011)
|
112. |
CA3 pyramidal neuron (Lazarewicz et al 2002)
|
113. |
CA3 pyramidal neuron (Safiulina et al. 2010)
|
114. |
CA3 pyramidal neuron: firing properties (Hemond et al. 2008)
|
115. |
Ca3 pyramidal neuron: membrane response near rest (Hemond et al. 2009)
|
116. |
CA3 Radiatum/Lacunosum-Moleculare interneuron, Ih (Anderson et al. 2011)
|
117. |
Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011)
|
118. |
Cardiac action potentials and pacemaker activity of sinoatrial node (DiFrancesco & Noble 1985)
|
119. |
Cell-type specific integration of feedforward and feedback synaptic inputs (Ridner et al, 2022)
|
120. |
Cerebellar Golgi cell (Solinas et al. 2007a, 2007b)
|
121. |
Cerebellar granular layer (Maex and De Schutter 1998)
|
122. |
Cerebellar nuclear neuron (Sudhakar et al., 2015)
|
123. |
Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010)
|
124. |
Cerebellar purkinje cell: interacting Kv3 and Na currents influence firing (Akemann, Knopfel 2006)
|
125. |
Cerebellar Purkinje Cell: resurgent Na current and high frequency firing (Khaliq et al 2003)
|
126. |
Channel density variability among CA1 neurons (Migliore et al. 2018)
|
127. |
Chirp stimulus responses in a morphologically realistic model (Narayanan and Johnston, 2007)
|
128. |
Circadian rhythmicity shapes astrocyte morphology and neuronal function in CA1 (McCauley et al 2020)
|
129. |
CN Octopus Cell: Ih current (Bal, Oertel 2000)
|
130. |
CN pyramidal fusiform cell (Kanold, Manis 2001)
|
131. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
132. |
Competing oscillator 5-cell circuit and Parameterscape plotting (Gutierrez et al. 2013)
|
133. |
Complex CA1-neuron to study AP initiation (Wimmer et al. 2010)
|
134. |
Computational analysis of NN activity and spatial reach of sharp wave-ripples (Canakci et al 2017)
|
135. |
Computational model of bladder small DRG neuron soma (Mandge & Manchanda 2018)
|
136. |
Computational neuropharmacology of CA1 pyramidal neuron (Ferrante et al. 2008)
|
137. |
Computer models of corticospinal neurons replicate in vitro dynamics (Neymotin et al. 2017)
|
138. |
Conductance based model for short term plasticity at CA3-CA1 synapses (Mukunda & Narayanan 2017)
|
139. |
Conductance-based model of rodent thoracic sympathetic postganglionic neuron (McKinnon et al 2019)
|
140. |
Control of oscillations and spontaneous firing in dopamine neurons (Rumbell & Kozloski 2019)
|
141. |
Control of vibrissa motoneuron firing (Harish and Golomb 2010)
|
142. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
143. |
D2 dopamine receptor modulation of interneuronal activity (Maurice et al. 2004)
|
144. |
Data-driven, HH-type model of the lateral pyloric (LP) cell in the STG (Nowotny et al. 2008)
|
145. |
DCN fusiform cell (Ceballos et al. 2016)
|
146. |
Decorrelation in the developing visual thalamus (Tikidji-Hamburyan et al, accepted)
|
147. |
Dendritic Impedance in Neocortical L5 PT neurons (Kelley et al. 2021)
|
148. |
Dentate gyrus network model (Santhakumar et al 2005)
|
149. |
Dentate gyrus network model (Tejada et al 2014)
|
150. |
Depolarization Enhacement of Dendritic Spike Propagation (Bock et al 2022)
|
151. |
Differences between type A and B photoreceptors (Blackwell 2006)
|
152. |
Dopamine neuron of the vent. periaqu. gray and dors. raphe nucleus (vlPAG/DRN) (Dougalis et al 2017)
|
153. |
Dopaminergic subtantia nigra neuron (Moubarak et al 2019)
|
154. |
Double cable myelinated axon (Layer 5 pyramidal neuron; Cohen et al 2020)
|
155. |
Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
|
156. |
Dynamical assessment of ion channels during in vivo-like states (Guet-McCreight & Skinner 2020)
|
157. |
Dynamical model of olfactory bulb mitral cell (Rubin, Cleland 2006)
|
158. |
Early-onset epileptic encephalopathy (Miceli et al. 2015)
|
159. |
Effect of the initial synaptic state on the probability to induce LTP and LTD (Migliore et al. 2015)
|
160. |
Effect of voltage sensitive fluorescent proteins on neuronal excitability (Akemann et al. 2009)
|
161. |
Effects of electric fields on cognitive functions (Migliore et al 2016)
|
162. |
Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)
|
163. |
Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009)
|
164. |
Electrodecrements in in vitro model of infantile spasms (Traub et al 2020)
|
165. |
Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
|
166. |
Enhanced Excitability in Hermissenda: modulation by 5-HT (Cai et al 2003)
|
167. |
ERG current in repolarizing plateau potentials in dopamine neurons (Canavier et al 2007)
|
168. |
Excitability of PFC Basal Dendrites (Acker and Antic 2009)
|
169. |
External Tufted Cell Model (Ryan Viertel, Alla Borisyuk 2019)
|
170. |
Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
|
171. |
Febrile seizure-induced modifications to Ih (Chen et al 2001)
|
172. |
Feedforward inhibition in pyramidal cells (Ferrante & Ascoli 2015)
|
173. |
Firing neocortical layer V pyramidal neuron (Reetz et al. 2014; Stadler et al. 2014)
|
174. |
Functional impact of dendritic branch point morphology (Ferrante et al., 2013)
|
175. |
Gamma genesis in the basolateral amygdala (Feng et al 2019)
|
176. |
GC model (Beining et al 2017)
|
177. |
Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010)
|
178. |
Glutamate mediated dendritic and somatic plateau potentials in cortical L5 pyr cells (Gao et al '20)
|
179. |
Grid cell oscillatory interference with noisy network oscillators (Zilli and Hasselmo 2010)
|
180. |
H-currents effect on the fluctuation of gamma/beta oscillations (Avella-Gonzalez et al., 2015)
|
181. |
Half-center oscillator database of leech heart interneuron model (Doloc-Mihu & Calabrese 2011)
|
182. |
HH model of SCN neurons including a transient K+ channel (Bano-Otalora et al 2021)
|
183. |
High frequency oscillations in a hippocampal computational model (Stacey et al. 2009)
|
184. |
Hippocampal CA1 microcircuit model including somatic and dendritic inhibition
|
185. |
Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)
|
186. |
Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
|
187. |
Hippocampal CA3 thorny and a-thorny principal neuron models (Linaro et al in review)
|
188. |
Hodgkin-Huxley model of persistent activity in PFC neurons (Winograd et al. 2008) (NEURON python)
|
189. |
Hodgkin-Huxley model of persistent activity in prefrontal cortex neurons (Winograd et al. 2008)
|
190. |
Human Cortical L5 Pyramidal Cell (Rich et al. 2021)
|
191. |
Human L5 Cortical Circuit (Guet-McCreight)
|
192. |
Human layer 2/3 cortical microcircuits in health and depression (Yao et al, 2022)
|
193. |
Hyperexcitability from Nav1.2 channel loss in neocortical pyramidal cells (Spratt et al 2021)
|
194. |
Hyperpolarization-activated inward current and dynamic range of electrical synapse (Stein et al '22)
|
195. |
Hysteresis in voltage gating of HCN channels (Elinder et al 2006, Mannikko et al 2005)
|
196. |
Ih levels roles in bursting and regular-spiking subiculum pyramidal neurons (van Welie et al 2006)
|
197. |
Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)
|
198. |
Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010)
|
199. |
Impedance spectrum in cortical tissue: implications for LFP signal propagation (Miceli et al. 2017)
|
200. |
In silico hippocampal modeling for multi-target pharmacotherapy in schizophrenia (Sherif et al 2020)
|
201. |
Intracortical synaptic potential modulation by presynaptic somatic potential (Shu et al. 2006, 2007)
|
202. |
Ionic current model of a Hypoglossal Motoneuron (Purvis & Butera 2005)
|
203. |
Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)
|
204. |
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
|
205. |
L5 PFC pyramidal neurons (Papoutsi et al. 2017)
|
206. |
L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011)
|
207. |
Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)
|
208. |
Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018)
|
209. |
LCN-HippoModel: model of CA1 PCs deep-superficial theta firing dynamics (Navas-Olive et al 2020)
|
210. |
Learning intrinsic excitability in Medium Spiny Neurons (Scheler 2014)
|
211. |
Leech heart interneuron network model (Hill et al 2001, 2002)
|
212. |
Levodopa-Induced Toxicity in Parkinson's Disease (Muddapu et al, 2022)
|
213. |
LGMD - ON excitation to dendritic field C
|
214. |
LGMD impedance (Dewell & Gabbiani 2019)
|
215. |
LGMD with 3D morphology and active dendrites (Dewell & Gabbiani 2018)
|
216. |
LIP and FEF rhythmic attention model (Aussel et al. 2023)
|
217. |
Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
|
218. |
Long-Term Inactivation of Na+ Channels as a Mech of Adaptation in CA1 Pyr Cells (Upchurch et al '22)
|
219. |
Mature and young adult-born dentate granule cell models (T2N interface) (Beining et al. 2017)
|
220. |
Mechanisms of fast rhythmic bursting in a layer 2/3 cortical neuron (Traub et al 2003)
|
221. |
Medial vestibular neuron models (Quadroni and Knopfel 1994)
|
222. |
Membrane electrical properties of mouse CA1 pyramidal cells during strong inputs (Bianchi et al 22)
|
223. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
224. |
Midbrain torus semicircularis neuron model (Aumentado-Armstrong et al. 2015)
|
225. |
Mirror Neuron (Antunes et al 2017)
|
226. |
Model of eupnea and sigh generation in respiratory network (Toporikova et al 2015)
|
227. |
Model of the cerebellar granular network (Sudhakar et al 2017)
|
228. |
Modeling conductivity profiles in the deep neocortical pyramidal neuron (Wang K et al. 2013)
|
229. |
Modeling interactions in Aplysia neuron R15 (Yu et al 2004)
|
230. |
Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018)
|
231. |
Modulation of septo-hippocampal theta activity by GABAA receptors (Hajos et al. 2004)
|
232. |
Modulation of temporal integration window (Migliore, Shepherd 2002)
|
233. |
Morphological determinants of action potential dynamics in substantia nigra (Moubarak et al 2022)
|
234. |
Mouse Episodic and Continuous Locomotion CPG (Sharples et al, 2022)
|
235. |
Multi-comp. CA1 O-LM interneuron model with varying dendritic Ih distributions (Sekulic et al 2015)
|
236. |
Multicompartmental cerebellar granule cell model (Diwakar et al. 2009)
|
237. |
Multiplexed coding in Purkinje neuron dendrites (Zang and De Schutter 2021)
|
238. |
Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
|
239. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
240. |
Na+ channel dependence of AP initiation in cortical pyramidal neuron (Kole et al. 2008)
|
241. |
Nav1.6 sodium channel model in globus pallidus neurons (Mercer et al. 2007)
|
242. |
Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
|
243. |
Network recruitment to coherent oscillations in a hippocampal model (Stacey et al. 2011)
|
244. |
Neuronal morphology goes digital ... (Parekh & Ascoli 2013)
|
245. |
Nigral dopaminergic neurons: effects of ethanol on Ih (Migliore et al. 2008)
|
246. |
NMDA subunit effects on Calcium and STDP (Evans et al. 2012)
|
247. |
Non-Weak E-Fields Pyramidal Neurons (Reznik et. al.,2015)
|
248. |
Normal ripples, abnormal ripples, and fast ripples in a hippocampal model (Fink et al. 2015)
|
249. |
O-LM interneuron model (Lawrence et al. 2006)
|
250. |
Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
|
251. |
Olfactory Periglomerular Cells: I-h kinetics (Cadetti, Belluzzi 2001)
|
252. |
Paired turbulence and light effect on calcium increase in Hermissenda (Blackwell 2004)
|
253. |
Paradoxical GABA-mediated excitation (Lewin et al. 2012)
|
254. |
Phase plane reveals two slow variables in midbrain dopamine neuron bursts (Yu and Canavier, 2015)
|
255. |
Phase response curve of a globus pallidal neuron (Fujita et al. 2011)
|
256. |
Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017)
|
257. |
Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)
|
258. |
PyMUS: A Python based Motor Unit Simulator (Kim & Kim 2018)
|
259. |
Pyramidal Neuron Deep: attenuation in dendrites (Stuart, Spruston 1998)
|
260. |
Pyramidal Neuron Deep: Constrained by experiment (Dyhrfjeld-Johnsen et al. 2005)
|
261. |
Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)
|
262. |
Rat LGN Thalamocortical Neuron (Connelly et al 2015, 2016)
|
263. |
Rat subthalamic projection neuron (Gillies and Willshaw 2006)
|
264. |
Reciprocal regulation of rod and cone synapse by NO (Kourennyi et al 2004)
|
265. |
Reduced-morphology model of CA1 pyramidal cells optimized + validated w/ HippoUnit (Tomko et al '21)
|
266. |
Rejuvenation model of dopamine neuron (Chan et al. 2007)
|
267. |
Reliability of Morris-Lecar neurons with added T, h, and AHP currents (Zeldenrust et al. 2013)
|
268. |
Resonance properties through Chirp stimulus responses (Narayanan Johnston 2007, 2008)
|
269. |
Rhesus Monkey Layer 3 Pyramidal Neurons: Young vs aged PFC (Coskren et al. 2015)
|
270. |
Rhesus Monkey Young and Aged L3 PFC Pyramidal Neurons (Rumbell et al. 2016)
|
271. |
Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)
|
272. |
Role of afferent-hair cell connectivity in determining spike train regularity (Holmes et al 2017)
|
273. |
Role of Ih in firing patterns of cold thermoreceptors (Orio et al., 2012)
|
274. |
Schiz.-linked gene effects on intrinsic single-neuron excitability (Maki-Marttunen et al. 2016)
|
275. |
SCZ-associated variant effects on L5 pyr cell NN activity and delta osc. (Maki-Marttunen et al 2018)
|
276. |
Selective control of cortical axonal spikes by a slowly inactivating K+ current (Shu et al. 2007)
|
277. |
Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
|
278. |
Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)
|
279. |
Simulated light response in rod photoreceptors (Liu and Kourennyi 2004)
|
280. |
Simulating ion channel noise in an auditory brainstem neuron model (Schmerl & McDonnell 2013)
|
281. |
Single-cell comprehensive biophysical model of SN pars compacta (Muddapu & Chakravarthy 2021)
|
282. |
Small world networks of Type I and Type II Excitable Neurons (Bogaard et al. 2009)
|
283. |
Spatial summation of excitatory and inhibitory inputs in pyramidal neurons (Hao et al. 2010)
|
284. |
Spiny neuron model with dopamine-induced bistability (Gruber et al 2003)
|
285. |
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
|
286. |
STDP and BDNF in CA1 spines (Solinas et al. 2019)
|
287. |
Stochastic Ih and Na-channels in pyramidal neuron dendrites (Kole et al 2006)
|
288. |
Stochastic ion channels and neuronal morphology (Cannon et al. 2010)
|
289. |
Superior paraolivary nucleus neuron (Kopp-Scheinpflug et al. 2011)
|
290. |
Synaptic integration by MEC neurons (Justus et al. 2017)
|
291. |
Synaptic integration in a model of granule cells (Gabbiani et al 1994)
|
292. |
Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020)
|
293. |
Temperature-Dependent Pyloric Pacemaker Kernel (Caplan JS et al., 2014)
|
294. |
Thalamic interneuron multicompartment model (Zhu et al. 1999)
|
295. |
Thalamic neuron: Modeling rhythmic neuronal activity (Meuth et al. 2005)
|
296. |
Thalamic Relay Neuron: I-h (McCormick, Pape 1990)
|
297. |
Thalamic transformation of pallidal input (Hadipour-Niktarash 2006)
|
298. |
Thalamocortical loop with delay for investigation of absence epilepsy (Liu et al 2019)
|
299. |
Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996)
|
300. |
Thalamocortical control of propofol phase-amplitude coupling (Soplata et al 2017)
|
301. |
Thalamocortical Relay cell under current clamp in high-conductance state (Zeldenrust et al 2018)
|
302. |
Thalamocortical relay neuron models constrained by experiment and optimization (Iavarone et al 2019)
|
303. |
The APP in C-terminal domain alters CA1 neuron firing (Pousinha et al 2019)
|
304. |
The origin of different spike and wave-like events (Hall et al 2017)
|
305. |
The STN-GPe network; subthalamic nucleus, prototypic GPe, and arkypallidal GPe neurons (Kitano 2023)
|
306. |
The subcellular distribution of T-type Ca2+ channels in LGN interneurons (Allken et al. 2014)
|
307. |
Theta phase precession in a model CA3 place cell (Baker and Olds 2007)
|
308. |
Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit (Ponzi et al. 2023)
|
309. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|
310. |
Ventromedial Thalamocortical Neuron (Bichler et al 2021)
|
311. |
Voltage attenuation in CA1 pyramidal neuron dendrites (Golding et al 2005)
|
312. |
Voltage- and Branch-specific Climbing Fiber Responses in Purkinje Cells (Zang et al 2018)
|
313. |
VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017)
|