| Models |
1. |
A Fast Rhythmic Bursting Cell: in vivo cell modeling (Lee 2007)
|
2. |
A focal seizure model with ion concentration changes (Gentiletti et al., 2022)
|
3. |
A model for pituitary GH(3) lactotroph (Wu and Chang 2005)
|
4. |
A Model of Multiple Spike Initiation Zones in the Leech C-interneuron (Crisp 2009)
|
5. |
A model of the T-junction of a C-fiber sensory neuron (Sundt et al. 2015)
|
6. |
A model of ventral Hippocampal CA1 pyramidal neurons of Tg2576 AD mice (Spoleti et al. 2021)
|
7. |
A Moth MGC Model-A HH network with quantitative rate reduction (Buckley & Nowotny 2011)
|
8. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
9. |
A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (CellML)
|
10. |
A multiscale approach to analyze circadian rhythms (Vasalou & Henson, 2010) (SBML)
|
11. |
A set of reduced models of layer 5 pyramidal neurons (Bahl et al. 2012)
|
12. |
A simplified cerebellar Purkinje neuron (the PPR model) (Brown et al. 2011)
|
13. |
A simplified model of NMDA oscillations in lamprey locomotor neurons (Huss et al. 2008)
|
14. |
A single column thalamocortical network model (Traub et al 2005)
|
15. |
A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)
|
16. |
Action Potential initiation and backpropagation in Neocortical L5 Pyramidal Neuron (Hu et al. 2009)
|
17. |
Action potential of mouse urinary bladder smooth muscle (Mahapatra et al 2018)
|
18. |
Actions of Rotenone on ionic currents and MEPPs in Mouse Hippocampal Neurons (Huang et al 2018)
|
19. |
Activity dependent conductances in a neuron model (Liu et al. 1998)
|
20. |
Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005)
|
21. |
Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015)
|
22. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460
|
23. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729
|
24. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472352327
|
25. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472421285
|
26. |
Allen Institute: Nr5a1-Cre VISp layer 2/3 473862496
|
27. |
Allen Institute: Nr5a1-Cre VISp layer 4 329322394
|
28. |
Allen Institute: Nr5a1-Cre VISp layer 4 472306544
|
29. |
Allen Institute: Nr5a1-Cre VISp layer 4 472442377
|
30. |
Allen Institute: Nr5a1-Cre VISp layer 4 472451419
|
31. |
Allen Institute: Nr5a1-Cre VISp layer 4 472915634
|
32. |
Allen Institute: Nr5a1-Cre VISp layer 4 473834758
|
33. |
Allen Institute: Nr5a1-Cre VISp layer 4 473863035
|
34. |
Allen Institute: Nr5a1-Cre VISp layer 4 473871429
|
35. |
Allen Institute: Ntsr1-Cre VISp layer 4 472430904
|
36. |
Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616
|
37. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845
|
38. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472349114
|
39. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177
|
40. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774
|
41. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421
|
42. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668
|
43. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074
|
44. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269
|
45. |
Allen Institute: Rbp4-Cre VISp layer 5 472424854
|
46. |
Allen Institute: Rbp4-Cre VISp layer 6a 473871592
|
47. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472299294
|
48. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 2/3 472434498
|
49. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 4 473863510
|
50. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 471087975
|
51. |
Allen Institute: Rorb-IRES2-Cre-D VISp layer 5 473561660
|
52. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472300877
|
53. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472427533
|
54. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 472912107
|
55. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 4 473465456
|
56. |
Allen Institute: Scnn1a-Tg2-Cre VISp layer 5 472306460
|
57. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 329321704
|
58. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 472363762
|
59. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473862845
|
60. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
|
61. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509
|
62. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473863578
|
63. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 473871773
|
64. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 471086533
|
65. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676
|
66. |
Allen Institute: Sst-IRES-Cre VISp layer 4 472304539
|
67. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472299363
|
68. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472450023
|
69. |
Allen Institute: Sst-IRES-Cre VISp layer 5 473835796
|
70. |
Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759
|
71. |
Allosteric gating of K channels (Horrigan et al 1999)
|
72. |
Alpha rhythm in vitro visual cortex (Traub et al 2020)
|
73. |
Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)
|
74. |
AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008)
|
75. |
AP shape and parameter constraints in optimization of compartment models (Weaver and Wearne 2006)
|
76. |
Apical Length Governs Computational Diversity of Layer 5 Pyramidal Neurons (Galloni et al 2020)
|
77. |
Ave. neuron model for slow-wave sleep in cortex Tatsuki 2016 Yoshida 2018 Rasmussen 2017 (all et al)
|
78. |
Axon-somatic back-propagation in a detailed model of cat spinal motoneuron (Balbi et al, 2015)
|
79. |
Axonal gap junctions produce fast oscillations in cerebellar Purkinje cells (Traub et al. 2008)
|
80. |
Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008)
|
81. |
Axonal Projection and Interneuron Types (Helmstaedter et al. 2008)
|
82. |
Basal ganglia-thalamic network model for deep brain stimulation (So et al. 2012)
|
83. |
BK Channels Promote Bursting in Pituitary Cells (Tabak et al 2011)
|
84. |
Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
|
85. |
Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) NEURON
|
86. |
Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) XPP
|
87. |
CA1 network model for place cell dynamics (Turi et al 2019)
|
88. |
CA1 network model: interneuron contributions to epileptic deficits (Shuman et al 2020)
|
89. |
CA1 pyramidal cell: reconstructed axonal arbor and failures at weak gap junctions (Vladimirov 2011)
|
90. |
CA1 pyramidal neuron (Combe et al 2018)
|
91. |
CA1 pyramidal neuron to study INaP properties and repetitive firing (Uebachs et al. 2010)
|
92. |
CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003)
|
93. |
CA1 pyramidal neuron: depolarization block (Bianchi et al. 2012)
|
94. |
CA1 pyramidal: Stochastic amplification of KCa in Ca2+ microdomains (Stanley et al. 2011)
|
95. |
CA3 hippocampal pyramidal neuron with voltage-clamp intrinsic conductance data (Traub et al 1991)
|
96. |
CA3 pyramidal cell: rhythmogenesis in a reduced Traub model (Pinsky, Rinzel 1994)
|
97. |
CA3 pyramidal neuron (Lazarewicz et al 2002)
|
98. |
CA3 Pyramidal Neuron (Migliore et al 1995)
|
99. |
CA3 pyramidal neuron: firing properties (Hemond et al. 2008)
|
100. |
Calcium dynamics depend on dendritic diameters (Anwar et al. 2014)
|
101. |
Calcium influx during striatal upstates (Evans et al. 2013)
|
102. |
Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)
|
103. |
Cell signaling/ion channel variability effects on neuronal response (Anderson, Makadia, et al. 2015)
|
104. |
Cell-type specific integration of feedforward and feedback synaptic inputs (Ridner et al, 2022)
|
105. |
Cerebellar Golgi cell (Solinas et al. 2007a, 2007b)
|
106. |
Cerebellar granular layer (Maex and De Schutter 1998)
|
107. |
Cerebellar purkinje cell (De Schutter and Bower 1994)
|
108. |
Cerebellar purkinje cell: interacting Kv3 and Na currents influence firing (Akemann, Knopfel 2006)
|
109. |
Cerebellar purkinje cell: K and Ca channels regulate APs (Miyasho et al 2001)
|
110. |
Cerebellar Purkinje Cell: resurgent Na current and high frequency firing (Khaliq et al 2003)
|
111. |
Cerebellum granule cell FHF (Dover et al. 2016)
|
112. |
Cerebellum Purkinje cell: dendritic ion channels activated by climbing fibre (Ait Ouares et al 2019)
|
113. |
Changes of ionic concentrations during seizure transitions (Gentiletti et al. 2016)
|
114. |
Channel density variability among CA1 neurons (Migliore et al. 2018)
|
115. |
Cholinergic and nicotinic regulation of DA neuron firing (Morozova et al 2020)
|
116. |
Circadian rhythmicity shapes astrocyte morphology and neuronal function in CA1 (McCauley et al 2020)
|
117. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
118. |
Comparison of full and reduced globus pallidus models (Hendrickson 2010)
|
119. |
Complex CA1-neuron to study AP initiation (Wimmer et al. 2010)
|
120. |
Computational model of bladder small DRG neuron soma (Mandge & Manchanda 2018)
|
121. |
Computational modeling of ultrasonic Subthalamic Nucleus stimulation (Tarnaud et al 2019)
|
122. |
Computer models of corticospinal neurons replicate in vitro dynamics (Neymotin et al. 2017)
|
123. |
Computer simulations of neuron-glia interactions mediated by ion flux (Somjen et al. 2008)
|
124. |
Conductance-based model of rodent thoracic sympathetic postganglionic neuron (McKinnon et al 2019)
|
125. |
Contrast invariance by LGN synaptic depression (Banitt et al. 2007)
|
126. |
Control of oscillations and spontaneous firing in dopamine neurons (Rumbell & Kozloski 2019)
|
127. |
Controlling KCa channels with different Ca2+ buffering models in Purkinje cell (Anwar et al. 2012)
|
128. |
Current Dipole in Laminar Neocortex (Lee et al. 2013)
|
129. |
D2 dopamine receptor modulation of interneuronal activity (Maurice et al. 2004)
|
130. |
Data-driven, HH-type model of the lateral pyloric (LP) cell in the STG (Nowotny et al. 2008)
|
131. |
DBS of a multi-compartment model of subthalamic nucleus projection neurons (Miocinovic et al. 2006)
|
132. |
Decorrelation in the developing visual thalamus (Tikidji-Hamburyan et al, accepted)
|
133. |
Dendritica (Vetter et al 2001)
|
134. |
Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014)
|
135. |
Dentate gyrus granule cell: calcium and calcium-dependent conductances (Aradi and Holmes 1999)
|
136. |
Dentate gyrus network model (Santhakumar et al 2005)
|
137. |
Dentate gyrus network model (Tejada et al 2014)
|
138. |
Depolarization Enhacement of Dendritic Spike Propagation (Bock et al 2022)
|
139. |
Determinants of the intracellular and extracellular waveforms in DA neurons (Lopez-Jury et al 2018)
|
140. |
Differences between type A and B photoreceptors (Blackwell 2006)
|
141. |
Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006)
|
142. |
Discharge hysteresis in motoneurons (Powers & Heckman 2015)
|
143. |
Dopaminergic cell bursting model (Kuznetsov et al 2006)
|
144. |
Double cable myelinated axon (Layer 5 pyramidal neuron; Cohen et al 2020)
|
145. |
DRt neuron model (Sousa et al., 2014)
|
146. |
Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
|
147. |
Dynamical assessment of ion channels during in vivo-like states (Guet-McCreight & Skinner 2020)
|
148. |
Dynamical model of olfactory bulb mitral cell (Rubin, Cleland 2006)
|
149. |
Effect of riluzole on action potential in cultured human skeletal muscle cells (Wang YJ et al. 2008)
|
150. |
Effect of voltage sensitive fluorescent proteins on neuronal excitability (Akemann et al. 2009)
|
151. |
Effects of Acetyl-L-carnitine on neural transmission (Lombardo et al 2004)
|
152. |
Effects of Dopamine Modulation and KIR Inactivation in NAc Medium Spiny Neurons (Steephen 2011)
|
153. |
Effects of increasing CREB on storage and recall processes in a CA1 network (Bianchi et al. 2014)
|
154. |
Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009)
|
155. |
Electrically-coupled Retzius neurons (Vazquez et al. 2009)
|
156. |
Electrodecrements in in vitro model of infantile spasms (Traub et al 2020)
|
157. |
Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010)
|
158. |
Enhanced Excitability in Hermissenda: modulation by 5-HT (Cai et al 2003)
|
159. |
ERG current in repolarizing plateau potentials in dopamine neurons (Canavier et al 2007)
|
160. |
Excitability of DA neurons and their regulation by synaptic input (Morozova et al. 2016a, 2016b)
|
161. |
Fast oscillations in inhibitory networks (Maex, De Schutter 2003)
|
162. |
Firing neocortical layer V pyramidal neuron (Reetz et al. 2014; Stadler et al. 2014)
|
163. |
Frog second-order vestibular neuron models (Rossert et al. 2011)
|
164. |
Gating of steering signals through phasic modulation of reticulospinal neurons (Kozlov et al. 2014)
|
165. |
GC model (Beining et al 2017)
|
166. |
Global structure, robustness, and modulation of neuronal models (Goldman et al. 2001)
|
167. |
Globus pallidus multi-compartmental model neuron with realistic morphology (Gunay et al. 2008)
|
168. |
Globus pallidus neuron models with differing dendritic Na channel expression (Edgerton et al., 2010)
|
169. |
Glutamate mediated dendritic and somatic plateau potentials in cortical L5 pyr cells (Gao et al '20)
|
170. |
HH model neuron of the Suprachiasmatic Nucleus including a persistent Na+ channel (Paul et al 2016)
|
171. |
HH-type model of fast-spiking parvalbumin interneurons in spinal dorsal horn (Ma et al, 2023)
|
172. |
Hippocampal CA1 microcircuit model including somatic and dendritic inhibition
|
173. |
Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)
|
174. |
Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)
|
175. |
Hippocampal CA3 thorny and a-thorny principal neuron models (Linaro et al in review)
|
176. |
Homeostatic mechanisms may shape oscillatory modulations (Peterson & Voytek 2020)
|
177. |
How BK and SK channels benefit early vision (Li X et al 2019)
|
178. |
Hypocretin and Locus Coeruleus model neurons (Carter et al 2012)
|
179. |
Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)
|
180. |
Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010)
|
181. |
Impact of dendritic size and topology on pyramidal cell burst firing (van Elburg and van Ooyen 2010)
|
182. |
Impedance spectrum in cortical tissue: implications for LFP signal propagation (Miceli et al. 2017)
|
183. |
Influence of dendritic structure on neocortical neuron firing patterns (Mainen and Sejnowski 1996)
|
184. |
Infraslow intrinsic rhythmogenesis in a subset of AOB projection neurons (Gorin et al 2016)
|
185. |
Inhibition and glial-K+ interaction leads to diverse seizure transition modes (Ho & Truccolo 2016)
|
186. |
Intracortical synaptic potential modulation by presynaptic somatic potential (Shu et al. 2006, 2007)
|
187. |
Intrinsic sensory neurons of the gut (Chambers et al. 2014)
|
188. |
Ionic current model of a Hypoglossal Motoneuron (Purvis & Butera 2005)
|
189. |
Ionic mechanisms of bursting in CA3 pyramidal neurons (Xu and Clancy 2008)
|
190. |
Ionic mechanisms of dendritic spikes (Almog and Korngreen 2014)
|
191. |
Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011)
|
192. |
L5 PFC pyramidal neurons (Papoutsi et al. 2017)
|
193. |
L5 pyr. cell spiking control by oscillatory inhibition in distal apical dendrites (Li et al 2013)
|
194. |
L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011)
|
195. |
Lamprey spinal CPG neuron (Huss et al. 2007)
|
196. |
Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008)
|
197. |
Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012)
|
198. |
Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)
|
199. |
Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018)
|
200. |
Leaky integrate-and-fire model of spike frequency adaptation in the LGMD (Gabbiani and Krapp 2006)
|
201. |
Learning intrinsic excitability in Medium Spiny Neurons (Scheler 2014)
|
202. |
Leech Heart (HE) Motor Neuron conductances contributions to NN activity (Lamb & Calabrese 2013)
|
203. |
Leech Mechanosensory Neurons: Synaptic Facilitation by Reflected APs (Baccus 1998)
|
204. |
Leech S Cell: Modulation of Excitability by Serotonin (Burrell and Crisp 2008)
|
205. |
Levodopa-Induced Toxicity in Parkinson's Disease (Muddapu et al, 2022)
|
206. |
LGMD - ON excitation to dendritic field C
|
207. |
LGMD Variability and logarithmic compression in dendrites (Jones and Gabbiani, 2012, 2012B)
|
208. |
LGMD with 3D morphology and active dendrites (Dewell & Gabbiani 2018)
|
209. |
Lobster STG pyloric network model with calcium sensor (Gunay & Prinz 2010) (Prinz et al. 2004)
|
210. |
Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)
|
211. |
Long-Term Inactivation of Na+ Channels as a Mech of Adaptation in CA1 Pyr Cells (Upchurch et al '22)
|
212. |
Low dose of dopamine may stimulate prolactin secretion by increasing K currents (Tabak et al. 2006)
|
213. |
Mathematical model for windup (Aguiar et al. 2010)
|
214. |
Mature and young adult-born dentate granule cell models (T2N interface) (Beining et al. 2017)
|
215. |
Mauthner cell with two pre-synaptic cells, an inhibitory and an excitatory cell (Orr et al 2021)
|
216. |
Mechanisms of fast rhythmic bursting in a layer 2/3 cortical neuron (Traub et al 2003)
|
217. |
MEG of Somatosensory Neocortex (Jones et al. 2007)
|
218. |
Membrane electrical properties of mouse CA1 pyramidal cells during strong inputs (Bianchi et al 22)
|
219. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
220. |
Model for pancreatic beta-cells (Law et al. 2020)
|
221. |
Model of SK current`s influence on precision in Globus Pallidus Neurons (Deister et al. 2009)
|
222. |
Model of the cerebellar granular network (Sudhakar et al 2017)
|
223. |
Modeling interactions in Aplysia neuron R15 (Yu et al 2004)
|
224. |
Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018)
|
225. |
Modelling reduced excitability in aged CA1 neurons as a Ca-dependent process (Markaki et al. 2005)
|
226. |
Modulation of septo-hippocampal theta activity by GABAA receptors (Hajos et al. 2004)
|
227. |
Morphological determinants of action potential dynamics in substantia nigra (Moubarak et al 2022)
|
228. |
Motoneuron model of self-sustained firing after spinal cord injury (Kurian et al. 2011)
|
229. |
Multi-comp. CA1 O-LM interneuron model with varying dendritic Ih distributions (Sekulic et al 2015)
|
230. |
Multicompartmental cerebellar granule cell model (Diwakar et al. 2009)
|
231. |
Multiplexed coding in Purkinje neuron dendrites (Zang and De Schutter 2021)
|
232. |
Multiscale interactions between chemical and electric signaling in LTP (Bhalla 2011)
|
233. |
Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013)
|
234. |
Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)
|
235. |
Muscle spindle feedback circuit (Moraud et al, 2016)
|
236. |
MyFirstNEURON (Houweling, Sejnowski 1997)
|
237. |
Na channel mutations in the dentate gyrus (Thomas et al. 2009)
|
238. |
Nav1.6 sodium channel model in globus pallidus neurons (Mercer et al. 2007)
|
239. |
Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998)
|
240. |
Network model with neocortical architecture (Anderson et al 2007,2012; Azhar et al 2012)
|
241. |
Neural mass model of spindle generation in the isolated thalamus (Schellenberger Costa et al. 2016)
|
242. |
NeuroGPU example on L5_TTPC1_cADpyr232_1 (Ben-Shalom 2022)(Ramaswamy et al., 2015)
|
243. |
Neuromusculoskeletal modeling with neural and finite element models (Volk et al, 2021)
|
244. |
Neuronal dendrite calcium wave model (Neymotin et al, 2015)
|
245. |
NMDA subunit effects on Calcium and STDP (Evans et al. 2012)
|
246. |
Nodose sensory neuron (Schild et al. 1994, Schild and Kunze 1997)
|
247. |
Non-Weak E-Fields Pyramidal Neurons (Reznik et. al.,2015)
|
248. |
O-LM interneuron model (Lawrence et al. 2006)
|
249. |
Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)
|
250. |
Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012)
|
251. |
Olfactory Bulb Network (Davison et al 2003)
|
252. |
Olfactory Mitral Cell (Bhalla, Bower 1993)
|
253. |
Olfactory Mitral Cell (Davison et al 2000)
|
254. |
Optical stimulation of a channelrhodopsin-2 positive pyramidal neuron model (Foutz et al 2012)
|
255. |
Orientation preference in L23 V1 pyramidal neurons (Park et al 2019)
|
256. |
Paired turbulence and light effect on calcium increase in Hermissenda (Blackwell 2004)
|
257. |
Paradoxical effect of fAHP amplitude on gain in dentate gyrus granule cells (Jaffe & Brenner 2018)
|
258. |
Paradoxical GABA-mediated excitation (Lewin et al. 2012)
|
259. |
Parallel Tempering MCMC on Liu et al 1998 (Wang et al 2022)
|
260. |
Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)
|
261. |
Phase plane reveals two slow variables in midbrain dopamine neuron bursts (Yu and Canavier, 2015)
|
262. |
Phase response curve of a globus pallidal neuron (Fujita et al. 2011)
|
263. |
Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017)
|
264. |
Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)
|
265. |
Purkinje cell: Synaptic activation predicts voltage control of burst-pause (Masoli & D'Angelo 2017)
|
266. |
Pyramidal neuron coincidence detection tuned by dendritic branching pattern (Schaefer et al 2003)
|
267. |
Pyramidal Neuron Deep: Constrained by experiment (Dyhrfjeld-Johnsen et al. 2005)
|
268. |
Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
|
269. |
Rat phrenic motor neuron (Amini et al 2004)
|
270. |
Rat subthalamic projection neuron (Gillies and Willshaw 2006)
|
271. |
Reciprocal regulation of rod and cone synapse by NO (Kourennyi et al 2004)
|
272. |
Reconstructing cerebellar granule layer evoked LFP using convolution (ReConv) (Diwakar et al. 2011)
|
273. |
Recurrent discharge in a reduced model of cat spinal motoneuron (Balbi et al, 2013)
|
274. |
Reduced-morphology model of CA1 pyramidal cells optimized + validated w/ HippoUnit (Tomko et al '21)
|
275. |
Regulation of firing frequency in a midbrain dopaminergic neuron model (Kuznetsova et al. 2010)
|
276. |
Regulation of the firing pattern in dopamine neurons (Komendantov et al 2004)
|
277. |
Rejuvenation model of dopamine neuron (Chan et al. 2007)
|
278. |
Relating anatomical and biophysical properties to motoneuron excitabilty (Moustafa et al. 2023)
|
279. |
Rhesus Monkey Layer 3 Pyramidal Neurons: Young vs aged PFC (Coskren et al. 2015)
|
280. |
Rhesus Monkey Young and Aged L3 PFC Pyramidal Neurons (Rumbell et al. 2016)
|
281. |
Robust and tunable bursting requires slow positive feedback (Franci et al 2018)
|
282. |
Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)
|
283. |
Rod photoreceptor (Barnes and Hille 1989, Publio et al. 2006, Kourennyi and Liu et al. 2004)
|
284. |
Role of afferent-hair cell connectivity in determining spike train regularity (Holmes et al 2017)
|
285. |
Role of Ih in firing patterns of cold thermoreceptors (Orio et al., 2012)
|
286. |
Role of the AIS in the control of spontaneous frequency of dopaminergic neurons (Meza et al 2017)
|
287. |
Salamander retinal ganglian cells: morphology influences firing (Sheasby, Fohlmeister 1999)
|
288. |
Salamander retinal ganglion cell: ion channels (Fohlmeister, Miller 1997)
|
289. |
Schiz.-linked gene effects on intrinsic single-neuron excitability (Maki-Marttunen et al. 2016)
|
290. |
SCZ-associated variant effects on L5 pyr cell NN activity and delta osc. (Maki-Marttunen et al 2018)
|
291. |
Self-organized olfactory pattern recognition (Kaplan & Lansner 2014)
|
292. |
Sensory-evoked responses of L5 pyramidal tract neurons (Egger et al 2020)
|
293. |
Serotonergic modulation of Aplysia sensory neurons (Baxter et al 1999)
|
294. |
Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)
|
295. |
Shaping of action potentials by different types of BK channels (Jaffe et al., 2011)
|
296. |
Simulated light response in rod photoreceptors (Liu and Kourennyi 2004)
|
297. |
Single neuron models of four types of L1 mouse Interneurons: Canpy, NGFC, alpha7 and VIP cells
|
298. |
Single-cell comprehensive biophysical model of SN pars compacta (Muddapu & Chakravarthy 2021)
|
299. |
Sleep-wake transitions in corticothalamic system (Bazhenov et al 2002)
|
300. |
Specific inhibition of dendritic plateau potential in striatal projection neurons (Du et al 2017)
|
301. |
Spike frequency adaptation in the LGMD (Peron and Gabbiani 2009)
|
302. |
Spine fusion and branching affects synaptic response (Rusakov et al 1996, 1997)
|
303. |
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
|
304. |
STDP depends on dendritic synapse location (Letzkus et al. 2006)
|
305. |
Stochastic calcium mechanisms cause dendritic calcium spike variability (Anwar et al. 2013)
|
306. |
Stochastic model for pituitary corticotrophs (Duncan et al., 2022)
|
307. |
Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
|
308. |
Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)
|
309. |
Striatum D1 Striosome and Matrix Upstates (Prager et al., 2020)
|
310. |
Studies of stimulus parameters for seizure disruption using NN simulations (Anderson et al. 2007)
|
311. |
Sympathetic Preganglionic Neurone (Briant et al. 2014)
|
312. |
Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013)
|
313. |
Synaptic integration in a model of granule cells (Gabbiani et al 1994)
|
314. |
Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)
|
315. |
Synchronization by D4 dopamine receptor-mediated phospholipid methylation (Kuznetsova, Deth 2008)
|
316. |
Systematic integration of data into multi-scale models of mouse primary V1 (Billeh et al 2020)
|
317. |
Temperature-Dependent Pyloric Pacemaker Kernel (Caplan JS et al., 2014)
|
318. |
Thalamic interneuron multicompartment model (Zhu et al. 1999)
|
319. |
Thalamic Reticular Network (Destexhe et al 1994)
|
320. |
Thalamocortical augmenting response (Bazhenov et al 1998)
|
321. |
Thalamocortical Relay cell under current clamp in high-conductance state (Zeldenrust et al 2018)
|
322. |
Thalamocortical relay neuron models constrained by experiment and optimization (Iavarone et al 2019)
|
323. |
The dynamics underlying pseudo-plateau bursting in a pituitary cell model (Teka et al. 2011)
|
324. |
The electrodiffusive neuron-extracellular-glia (edNEG) model (Sætra et al. 2021)
|
325. |
The electrodiffusive Pinsky-Rinzel (edPR) model (Sætra et al., 2020)
|
326. |
The microcircuits of striatum in silico (Hjorth et al 2020)
|
327. |
The origin of different spike and wave-like events (Hall et al 2017)
|
328. |
The relationship between two fast/slow analysis techniques for bursting oscill. (Teka et al. 2012)
|
329. |
The STN-GPe network; subthalamic nucleus, prototypic GPe, and arkypallidal GPe neurons (Kitano 2023)
|
330. |
The subcellular distribution of T-type Ca2+ channels in LGN interneurons (Allken et al. 2014)
|
331. |
Theta phase precession in a model CA3 place cell (Baker and Olds 2007)
|
332. |
Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit (Ponzi et al. 2023)
|
333. |
Tonic activation of extrasynaptic NMDA-R promotes bistability (Gall & Dupont 2020)
|
334. |
Tonic neuron in spinal lamina I: prolongation of subthreshold depol. (Prescott and De Koninck 2005)
|
335. |
Touch Sensory Cells (T Cells) of the Leech (Cataldo et al. 2004) (Scuri et al. 2007)
|
336. |
TRPM8-dependent dynamic response in cold thermoreceptors (Olivares et al. 2015)
|
337. |
Turtle visual cortex model (Nenadic et al. 2003, Wang et al. 2005, Wang et al. 2006)
|
338. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|
339. |
Understanding how fast activating K+ channels promote bursting in pituitary cells (Vo et al 2014)
|
340. |
Ventromedial Thalamocortical Neuron (Bichler et al 2021)
|
341. |
Voltage- and Branch-specific Climbing Fiber Responses in Purkinje Cells (Zang et al 2018)
|
342. |
VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017)
|
343. |
Zonisamide-induced inhibition of the firing of APs in hippocampal neurons (Huang et al. 2007)
|