| Models |
1. |
A multilayer cortical model to study seizure propagation across microdomains (Basu et al. 2015)
|
2. |
A network model of tail withdrawal in Aplysia (White et al 1993)
|
3. |
A set of reduced models of layer 5 pyramidal neurons (Bahl et al. 2012)
|
4. |
A single column thalamocortical network model (Traub et al 2005)
|
5. |
Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015)
|
6. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 472447460
|
7. |
Allen Institute: Gad2-IRES-Cre VISp layer 5 473561729
|
8. |
Allen Institute: Htr3a-Cre VISp layer 2/3 472352327
|
9. |
Allen Institute: Ntsr1-Cre VISp layer 4 472430904
|
10. |
Allen Institute: Pvalb-IRES-Cre VISp layer 2/3 472306616
|
11. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 471085845
|
12. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472349114
|
13. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 472912177
|
14. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473465774
|
15. |
Allen Institute: Pvalb-IRES-Cre VISp layer 5 473862421
|
16. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 471081668
|
17. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 472301074
|
18. |
Allen Institute: Pvalb-IRES-Cre VISp layer 6a 473860269
|
19. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 4 473872986
|
20. |
Allen Institute: Scnn1a-Tg3-Cre VISp layer 5 472455509
|
21. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 471086533
|
22. |
Allen Institute: Sst-IRES-Cre VISp layer 2/3 472304676
|
23. |
Allen Institute: Sst-IRES-Cre VISp layer 4 472304539
|
24. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472299363
|
25. |
Allen Institute: Sst-IRES-Cre VISp layer 5 472450023
|
26. |
Allen Institute: Sst-IRES-Cre VISp layer 6a 472440759
|
27. |
Alpha rhythm in vitro visual cortex (Traub et al 2020)
|
28. |
Burst induced synaptic plasticity in Apysia sensorimotor neurons (Phares et al 2003)
|
29. |
Bursting and resonance in cerebellar granule cells (D'Angelo et al. 2001)
|
30. |
Calcium influx during striatal upstates (Evans et al. 2013)
|
31. |
Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)
|
32. |
Cerebellar purkinje cell: K and Ca channels regulate APs (Miyasho et al 2001)
|
33. |
Collection of simulated data from a thalamocortical network model (Glabska, Chintaluri, Wojcik 2017)
|
34. |
Comparison of full and reduced globus pallidus models (Hendrickson 2010)
|
35. |
Computational model of bladder small DRG neuron soma (Mandge & Manchanda 2018)
|
36. |
Dynamic cortical interlaminar interactions (Carracedo et al. 2013)
|
37. |
Dynamical model of olfactory bulb mitral cell (Rubin, Cleland 2006)
|
38. |
Effects of Dopamine Modulation and KIR Inactivation in NAc Medium Spiny Neurons (Steephen 2011)
|
39. |
Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009)
|
40. |
Electrodecrements in in vitro model of infantile spasms (Traub et al 2020)
|
41. |
Enhanced Excitability in Hermissenda: modulation by 5-HT (Cai et al 2003)
|
42. |
Fast-spiking cortical interneuron (Golomb et al. 2007)
|
43. |
Firing patterns in stuttering fast-spiking interneurons (Klaus et al. 2011)
|
44. |
Impedance spectrum in cortical tissue: implications for LFP signal propagation (Miceli et al. 2017)
|
45. |
Kenyon cells in the honeybee (Wustenberg et al 2004)
|
46. |
L5b PC model constrained for BAC firing and perisomatic current step firing (Hay et al., 2011)
|
47. |
Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)
|
48. |
Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018)
|
49. |
Learning intrinsic excitability in Medium Spiny Neurons (Scheler 2014)
|
50. |
Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)
|
51. |
Modeling interactions in Aplysia neuron R15 (Yu et al 2004)
|
52. |
Multicompartmental cerebellar granule cell model (Diwakar et al. 2009)
|
53. |
Multiscale model of excitotoxicity in PD (Muddapu and Chakravarthy 2020)
|
54. |
Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013)
|
55. |
NAcc medium spiny neuron: effects of cannabinoid withdrawal (Spiga et al. 2010)
|
56. |
NMDA subunit effects on Calcium and STDP (Evans et al. 2012)
|
57. |
Olfactory Mitral Cell: I-A and I-K currents (Wang et al 1996)
|
58. |
Phase response curve of a globus pallidal neuron (Fujita et al. 2011)
|
59. |
Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017)
|
60. |
Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013)
|
61. |
Schiz.-linked gene effects on intrinsic single-neuron excitability (Maki-Marttunen et al. 2016)
|
62. |
SCZ-associated variant effects on L5 pyr cell NN activity and delta osc. (Maki-Marttunen et al 2018)
|
63. |
Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)
|
64. |
Single compartment Dorsal Lateral Medium Spiny Neuron w/ NMDA and AMPA (Biddell and Johnson 2013)
|
65. |
Single-cell comprehensive biophysical model of SN pars compacta (Muddapu & Chakravarthy 2021)
|
66. |
Specific inhibition of dendritic plateau potential in striatal projection neurons (Du et al 2017)
|
67. |
Spiny neuron model with dopamine-induced bistability (Gruber et al 2003)
|
68. |
Spiny Projection Neuron Ca2+ based plasticity is robust to in vivo spike train (Dorman&Blackwell)
|
69. |
Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)
|
70. |
Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)
|
71. |
Striatum D1 Striosome and Matrix Upstates (Prager et al., 2020)
|
72. |
The microcircuits of striatum in silico (Hjorth et al 2020)
|
73. |
The origin of different spike and wave-like events (Hall et al 2017)
|
74. |
The STN-GPe network; subthalamic nucleus, prototypic GPe, and arkypallidal GPe neurons (Kitano 2023)
|
75. |
Unbalanced peptidergic inhibition in superficial cortex underlies seizure activity (Hall et al 2015)
|
76. |
VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017)
|