Models that contain the Model Concept : Ion Channel Kinetics

(Functions or data that describe the current-voltage relationship of an ion channel either collectively (Hodgkin-Huxley model) or as a collection of open and closed states (Markov model).)
Re-display model names without descriptions
    Models   Description
1.  A cardiac cell simulator (Puglisi and Bers 2001), applied to the QT interval (Busjahn et al 2004)
"LabHEART is an easy to use program that simulates the cardiac action potential, calcium transient and ionic currents. Key parameters such as ionic concentration, stimulus waveform and channel conductance can easily be changed by a click on an icon or dragging a slider. It is a powerfull tool for teaching and researching cardiac electrophysiology."
2.  A computational approach/model to explore NMDA receptors functions (Keller et al 2017)
"... Here, we describe a general computational method aiming at developing kinetic Markov-chain based models of NMDARs subtypes capable of reproducing various experimental results. These models are then used to make predictions on additional (non-obvious) properties and on their role in synaptic function under various physiological and pharmacological conditions. For the purpose of this book chapter, we will focus on the method used to develop a NMDAR model that includes pharmacological site of action of different compounds. Notably, this elementary model can subsequently be included in a neuron model (not described in detail here) to explore the impact of their differential distribution on synaptic functions."
3.  A dynamic model of the canine ventricular myocyte (Hund, Rudy 2004)
The Hund-Rudy dynamic (HRd) model is based on data from the canine epicardial ventricular myocyte. Rate-dependent phenomena associated with ion channel kinetics, action potential properties and Ca2+ handling are simulated by the model. See paper for more and details.
4.  A fast model of voltage-dependent NMDA Receptors (Moradi et al. 2013)
These are two or triple-exponential models of the voltage-dependent NMDA receptors. Conductance of these receptors increase voltage-dependently with a "Hodgkin and Huxley-type" gating style that is also depending on glutamate-binding. Time course of the gating of these receptors in response to glutamate are also changing voltage-dependently. Temperature sensitivity and desensitization of these receptor are also taken into account. Three previous kinetic models that are able to simulate the voltage-dependence of the NMDARs are also imported to the NMODL. These models are not temperature sensitive. These models are compatible with the "event delivery system" of NEURON. Parameters that are reported in our paper are applicable to CA1 pyramidal cell dendrites.
5.  A Markov model of human Cav2.3 channels and their modulation by Zn2+ (Neumaier et al 2020)
The Markov model for Cav2.3 channel gating in the absence of trace metals was developed based on channel structure, previous modeling studies and the ability to fit the data. Model parameters were optimized by fitting the model to macroscopic currents recorded with various electrophysiological protocols from HEK-293 cells stably transfected with human Cav2.3+ß3 channel subunits. The effects of Zn2+ were implemented by assuming that Zn2+ binding to a first site (KZn=0.003 mM) leads to electrostatic modification and mechanical slowing of one of the voltage-sensors while Zn2+-binding to a second, intra-pore site (KZn=0.1 mM) blocks the channel and modifies the opening and closing transitions.
6.  A model for pituitary GH(3) lactotroph (Wu and Chang 2005)
The ATP-sensitive K(+) (K(ATP)) channels are composed of sulfonylurea receptor and inwardly rectifying K(+) channel (Kir6.2) subunit. These channels are regulated by intracellular ADP/ATP ratio and play a role in cellular metabolism. ... The objective of this study was to determine whether Diethyl pyrocarbonate (DEPC) modifies K(ATP)-channel activity in pituitary GH(3) cells. ... Simulation studies also demonstrated that the increased conductance of K(ATP)-channels used to mimic DEPC actions reduced the frequency of spontaneous action potentials and fluctuation of intracellular Ca(2+). The results indicate that chemical modification with DEPC enhances K(ATP)-channel activity and influences functional activities of pituitary GH(3) cells. See paper for more and details.
7.  A model of beta-adrenergic modulation of IKs in the guinea-pig ventricle (Severi et al. 2009)
Detailed understanding of IKs gating complexity may provide clues on the mechanisms of cardiac repolarization instability and the resulting arrhythmias. We developed and tested a kinetic Markov model to interpret physiologically relevant IKs properties, including pause-dependency and modulation by beta-adrenergic receptors (beta-AR). The model was developed from the Silva & Rudy formulation. Parameters were optimized on control and ISO experimental data, respectively.
8.  A nicotinic acetylcholine receptor kinetic model (Edelstein et al. 1996)
Nicotinic acetylcholine receptors are transmembrane oligomeric proteins that mediate interconversions between open and closed channel states under the control of neurotransmitters. .. In order to represent the functional properties of such receptors, we have developed a kinetic model that links conformational interconversion rates to agonist binding and extends the general principles of the Monod- Wyman-Changeux model of allosteric transitions. ... Application of the model to the peripheral nicotinic acetylcholine receptor (nAChR) accounts for the main properties of ligand-gating, including single-channel events, and several new relationships are predicted. ... In terms of future developments, the analysis presented here provides a physical basis for constructing more biologically realistic models of synaptic modulation that may be applied to artificial neural networks.
9.  Accurate and fast simulation of channel noise in conductance-based model neurons (Linaro et al 2011)
We introduce and operatively present a general method to simulate channel noise in conductance-based model neurons, with modest computational overheads. Our approach may be considered as an accurate generalization of previous proposal methods, to the case of voltage-, ion-, and ligand-gated channels with arbitrary complexity. We focus on the discrete Markov process descriptions, routinely employed in experimental identification of voltage-gated channels and synaptic receptors.
10.  Action Potential initiation and backpropagation in Neocortical L5 Pyramidal Neuron (Hu et al. 2009)
"...Previous computational studies have yielded conflicting conclusions about the role of Na+ channel density and biophysical properties in action potential initiation as a result of inconsistent estimates of channel density. Our modeling studies integrated the immunostaining and electrophysiological results and showed that the lowest threshold for action potential initiation at the distal AIS was largely determined by the density of low-threshold Nav1.6 channels ... Distinct from the function of Nav1.6 channel, the Nav1.2 channel may control action potential backpropagation because of its high density at the proximal AIS and high threshold. ... In conclusion, distal AIS accumulation of Nav1.6 channels determines the low threshold for action potential initiation; whereas proximal AIS accumulation of Nav1.2 channels sets the threshold for the generation of somatodendritic potentials and ensures action potential backpropagation to the soma and dendrites. Thus, Nav1.6 and Nav1.2 channels serve distinct functions in action potential initiation and backpropagation."
11.  Action potential of mouse urinary bladder smooth muscle (Mahapatra et al 2018)
Urinary incontinence is associated with enhanced spontaneous phasic contractions of the detrusor smooth muscle (DSM). Although a complete understanding of the etiology of these spontaneous contractions is not yet established, it is suggested that the spontaneously evoked action potentials (sAPs) in DSM cells initiate and modulate the contractions. In order to further our understanding of the ionic mechanisms underlying sAP generation, we present here a biophysically detailed computational model of a single DSM cell. First, we constructed mathematical models for nine ion channels found in DSM cells based on published experimental data: two voltage-gated Ca2+ ion channels, an hyperpolarization-activated ion channel, two voltage-gated K+ ion channels, three Ca2+-activated K+ ion channels and a non-specific background leak ion channel. Incorporating these channels, our DSM model is capable of reproducing experimentally recorded spike-type sAPs of varying configurations, ranging from sAPs displaying after-hyperpolarizations to sAPs displaying after-depolarizations. Our model, constrained heavily by physiological data, provides a powerful tool to investigate the ionic mechanisms underlying the genesis of DSM electrical activity, which can further shed light on certain aspects of urinary bladder function and dysfunction.
12.  Activity dependent changes in motoneurones (Dai Y et al 2002, Gardiner et al 2002)
These two papers review various experimental papers and examine the effects of activity on motoneurons in a similar 5 compartment model with 10 active conductances. Included are slow (S) and fast (F) type and fast fatigue resistant (FR) and fast fatigable (FF) models corresponding to the types of motoneurons. See papers for more and details.
13.  Activity dependent regulation of pacemaker channels by cAMP (Wang et al 2002)
Demonstration of the physiological consequences of the cyclic allosteric gating scheme for Ih mediated by HCN2 in thalamocortical relay cells.
14.  Alcohol action in a detailed Purkinje neuron model and an efficient simplified model (Forrest 2015)
" ... we employ a novel reduction algorithm to produce a 2 compartment model of the cerebellar Purkinje neuron from a previously published, 1089 compartment model. It runs more than 400 times faster and retains the electrical behavior of the full model. So, it is more suitable for inclusion in large network models, where computational power is a limiting issue. We show the utility of this reduced model by demonstrating that it can replicate the full model’s response to alcohol, which can in turn reproduce experimental recordings from Purkinje neurons following alcohol application. ..."
15.  Allosteric gating of K channels (Horrigan et al 1999)
Calcium sensitive large-conductance K channel conductance is controlled by both cytoplasmic calcium and membrane potential. Experimental data obtained by the inside out patch method can be understood in terms of a gating scheme where a central transition between a closed and an open conformation is allosterically regulated by the state of four independent and identical voltage sensors. See paper for more and details.
16.  An allosteric kinetics of NMDARs in STDP (Urakubo et al. 2008)
"... We developed a detailed biophysical model of STDP and found that the model required spike timing-dependent distinct suppression of NMDARs by Ca2+-calmodulin. This led us to predict an allosteric kinetics of NMDARs: a slow and rapid suppression of NMDARs by Ca2+-calmodulin with prespiking -> postspiking and postspiking -> prespiking, respectively. We found that the allosteric kinetics, but not the conventional kinetics, is consistent with specific features of amplitudes and peak time of NMDAR-mediated EPSPs in experiments. ..." See paper for more and details.
17.  Application of a common kinetic formalism for synaptic models (Destexhe et al 1994)
Application to AMPA, NMDA, GABAA, and GABAB receptors is given in a book chapter. The reference paper synthesizes a comprehensive general description of synaptic transmission with Markov kinetic models. This framework is applicable to modeling ion channels, synaptic release, and all receptors. Please see the references for more details. A simple introduction to this method is given in a seperate paper Destexhe et al Neural Comput 6:14-18 , 1994). More information and papers at and through email:
18.  Availability of low-threshold Ca2+ current in retinal ganglion cells (Lee SC et al. 2003)
"... we measured T-type current of isolated goldfish retinal ganglion cells with perforated-patch voltageclamp methods in solutions containing a normal extracellular Ca2+ concentration. The voltage sensitivities and rates of current activation, inactivation, deactivation, and recovery from inactivation were similar to those of expressed +1G (CaV3.1) Ca2+ channel clones, except that the rate of deactivation was significantly faster. We reproduced the amplitude and kinetics of measured T currents with a numerical simulation based on a kinetic model developed for an +1G Ca2+ channel. Finally, we show that this model predicts the increase of T-type current made available between resting potential and spike threshold by repetitive hyperpolarizations presented at rates that are within the bandwidth of signals processed in situ by these neurons."
19.  Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008)
"... We show that the Na+ channel NaV1.6 displays a striking aggregation at the AIS of cortical neurons. ... In combination with simulations using a realistic computer model of a CA1 pyramidal cell, our results imply that a hyperpolarized voltage-dependence of activation of AIS NaV1.6 channels is important both in determining spike threshold and localizing spike initiation to the AIS. ... These results suggest that NaV1.6 subunits at the AIS contribute significantly to its role as spike trigger zone and shape repetitive discharge properties of CA1 neurons."
20.  Bursting and resonance in cerebellar granule cells (D'Angelo et al. 2001)
In this study we report theta-frequency (3-12 Hz) bursting and resonance in rat cerebellar granule cells and show that these neurons express a previously unidentified slow repolarizing K1 current (IK-slow ). Our experimental and modeling results indicate that IK-slow was necessary for both bursting and resonance. See paper for more.
21.  Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)
"Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. ..."
22.  Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) NEURON
Macroscopic channel model based on Moczydlowski, E. and Latorre, R. (1983). Gating kinetics of Ca++ activated K+ channels from rat muscle incorporated into planar lipid bilayers. J. Gen. Physiol. 82: 511-542 See README file for more information.
23.  Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) XPP
This is an XPP version of the classic KCa channel from Moczydlowski and Latorre 1983.
24.  CA1 interneuron: K currents (Lien et al 2002)
NEURON mod files for slow and fast K-DR, and K-A potassium currents in inhibitory interneurones of stratum oriens-alveus of the hippocampal CA1 region.
25.  CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)
This model simulates the effects of dendritic sodium spikes initiated in distal apical dendrites on the voltage and the calcium dynamics revealed by calcium imaging. It shows that dendritic sodium spike promotes large and transient calcium influxes via NMDA receptor and L-type voltage-gated calcium channels, which contribute to the induction of LTP at distal synapses.
26.  CA1 pyramidal neuron: effects of Lamotrigine on dendritic excitability (Poolos et al 2002)
NEURON mod files from N. Poolos, M. Migliore, and D. Johnston, Nature Neuroscience (2002). The experimental and modeling results in this paper demonstrate for the first time that neuronal excitability can be altered by pharmaceuticals acting selectively on dendrites, and suggest an important role for Ih in controlling dendritic excitability and epileptogenesis.
27.  CA1 pyramidal neuron: Persistent Na current mediates steep synaptic amplification (Hsu et al 2018)
This paper shows that persistent sodium current critically contributes to the subthreshold nonlinear dynamics of CA1 pyramidal neurons and promotes rapidly reversible conversion between place-cell and silent-cell in the hippocampus. A simple model built with realistic axo-somatic voltage-gated sodium channels in CA1 (Carter et al., 2012; Neuron 75, 1081–1093) demonstrates that the biophysics of persistent sodium current is sufficient to explain the synaptic amplification effects. A full model built previously (Grienberger et al., 2017; Nature Neuroscience, 20(3): 417–426) with detailed morphology, ion channel types and biophysical properties of CA1 place cells naturally reproduces the steep voltage dependence of synaptic responses.
28.  CA1 pyramidal neuron: signal propagation in oblique dendrites (Migliore et al 2005)
NEURON mod files from the paper: M. Migliore, M. Ferrante, GA Ascoli (2005). The model shows how the back- and forward propagation of action potentials in the oblique dendrites of CA1 neurons could be modulated by local properties such as morphology or active conductances.
29.  CA1 pyramidal neurons: effects of a Kv7.2 mutation (Miceli et al. 2009)
NEURON mod files from the paper: Miceli et al, Neutralization of a unique, negatively-charged residue in the voltage sensor of K(V)7.2 subunits in a sporadic case of benign familial neonatal seizures, Neurobiol Dis., in press (2009). In this paper, the model revealed that the gating changes introduced by a mutation in K(v)7.2 genes encoding for the neuronal KM current in a case of benign familial neonatal seizures, increased cell firing frequency, thereby triggering the neuronal hyperexcitability which underlies the observed neonatal epileptic condition.
30.  CA1 pyramidal: Stochastic amplification of KCa in Ca2+ microdomains (Stanley et al. 2011)
This minimal model investigates stochastic amplification of calcium-activated potassium (KCa) currents. Amplification results from calcium being released in short high amplitude pulses associated with the stochastic gating of calcium channels in microdomains. This model predicts that such pulsed release of calcium significantly increases subthreshold SK2 currents above what would be produced by standard deterministic models. However, there is little effect on a simple sAHP current kinetic scheme. This suggests that calcium stochasticity and microdomains should be considered when modeling certain KCa currents near subthreshold conditions.
31.  Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011)
Inward and outward currents of the olfactory bulb juxtaglomerular cells are characterized in the experiments and modeling in these two Masurkar and Chen 2011 papers.
32.  Calculating the consequences of left-shifted Nav channel activity in sick cells (Joos et al 2018)
"Two features common to diverse sick excitable cells are “leaky” Nav channels and bleb damage-damaged membranes. The bleb damage, we have argued, causes a channel kinetics based “leakiness.” Recombinant (node of Ranvier type) Nav1.6 channels voltage-clamped in mechanically-blebbed cell-attached patches undergo a damage intensity dependent kinetic change. Specifically, they experience a coupled hyperpolarizing (left) shift of the activation and inactivation processes. The biophysical observations on Nav1.6 currents formed the basis of Nav-Coupled Left Shift (Nav-CLS) theory. Node of Ranvier excitability can be modeled with Nav-CLS imposed at varying LS intensities and with varying fractions of total nodal membrane affected. Mild damage from which sick excitable cells might recover is of most interest pathologically. Accordingly, Na+/K+ ATPase (pump) activity was included in the modeling. As we described more fully in our other recent reviews, Nav-CLS in nodes with pumps proves sufficient to predict many of the pathological excitability phenomena reported for sick excitable cells. ..."
33.  Cardiac action potential based on Luo-Rudy phase 1 model (Luo and Rudy 1991), (Wu 2004)
A mathematical model of the membrane action potential of the mammalian ventricular cell is introduced. The model is based, whenever possible, on recent single-cell and single-channel data and incorporates the possibility of changing extracellular potassium concentration [K]o. The fast sodium current, INa, is characterized by fast upstroke velocity (Vmax = 400 V/sec) and slow recovery from inactivation. The time-independent potassium current, IK1, includes a negative-slope phase and displays significant crossover phenomenon as [K]o is varied. The time-dependent potassium current, IK, shows only a minimal degree of crossover. A novel potassium current that activates at plateau potentials is included in the model. The simulated action potential duplicates the experimentally observed effects of changes in [K]o on action potential duration and rest potential. See papers for more and details.
34.  Cardiac Atrial Cell (Courtemanche et al 1998)
Marc Courtemanche, Rafael J. Ramirez, and Stanley Nattel. Ionic mechanisms underlying human atrial action potential properties insights from a mathematical model Am J Physiol Heart Circ Physiol 1998 275: H301-H321. The implementation of this model in NEURON was contributed by Ingemar Jacobson.
35.  Cardiac Atrial Cell (Courtemanche et al 1998) (C++)
The mechanisms underlying many important properties of the human atrial action potential (AP) are poorly understood. Using specific formulations of the K+, Na+, and Ca2+ currents based on data recorded from human atrial myocytes, along with representations of pump, exchange, and background currents, we developed a mathematical model of the AP. The model AP resembles APs recorded from human atrial samples and responds to rate changes, L-type Ca2+ current blockade, Na+/Ca2+ exchanger inhibition, and variations in transient outward current amplitude in a fashion similar to experimental recordings. Rate-dependent adaptation of AP duration, an important determinant of susceptibility to atrial fibrillation, was attributable to incomplete L-type Ca2+ current recovery from inactivation and incomplete delayed rectifier current deactivation at rapid rates. Experimental observations of variable AP morphology could be accounted for by changes in transient outward current density, as suggested experimentally. We conclude that this mathematical model of the human atrial AP reproduces a variety of observed AP behaviors and provides insights into the mechanisms of clinically important AP properties.
36.  Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010)
This is the GENESIS 2.3 implementation of a multi-compartmental deep cerebellar nucleus (DCN) neuron model with a full dendritic morphology and appropriate active conductances. We generated a good match of our simulations with DCN current clamp data we recorded in acute slices, including the heterogeneity in the rebound responses. We then examined how inhibitory and excitatory synaptic input interacted with these intrinsic conductances to control DCN firing. We found that the output spiking of the model reflected the ongoing balance of excitatory and inhibitory input rates and that changing the level of inhibition performed an additive operation. Rebound firing following strong Purkinje cell input bursts was also possible, but only if the chloride reversal potential was more negative than -70 mV to allow de-inactivation of rebound currents. Fast rebound bursts due to T-type calcium current and slow rebounds due to persistent sodium current could be differentially regulated by synaptic input, and the pattern of these rebounds was further influenced by HCN current. Our findings suggest that active properties of DCN neurons could play a crucial role for signal processing in the cerebellum.
37.  Cerebellar purkinje cell: interacting Kv3 and Na currents influence firing (Akemann, Knopfel 2006)
Purkinje neurons spontaneously generate action potentials in the absence of synaptic drive and thereby exert a tonic, yet plastic, input to their target cells in the deep cerebellar nuclei. Purkinje neurons express two ionic currents with biophysical properties that are specialized for high-frequency firing: resurgent sodium currents and potassium currents mediated by Kv3.3. Numerical simulations indicated that Kv3.3 increases the spontaneous firing rate via cooperation with resurgent sodium currents. We conclude that the rate of spontaneous action potential firing of Purkinje neurons is controlled by the interaction of Kv3.3 potassium currents and resurgent sodium currents. See paper for more and details.
38.  Cerebellar Purkinje Cell: resurgent Na current and high frequency firing (Khaliq et al 2003)
These mod files supplied by Dr Raman are for the below two references. ... we modeled action potential firing by simulating eight currents directly recorded from Purkinje cells in both wild-type and (mutant) med mice. Regular, high-frequency firing was slowed in med Purkinje neurons. In addition to disrupted sodium currents, med neurons had small but significant changes in potassium and leak currents. Simulations indicated that these modified non-sodium currents could not account for the reduced excitability of med cells but instead slightly facilitated spiking. The loss of NaV1.6-specific kinetics, however, slowed simulated spontaneous activity. Together, the data suggest that across a range of conditions, sodium currents with a resurgent component promote and accelerate firing. See papers for more and details.
39.  Channel parameter estimation from current clamp and neuronal properties (Toth, Crunelli 2001)
In this paper, we present a method by which the activation and kinetic properties of INa, IK can be estimated from current-clamp data, more precisely from the time course of the action potential, provided some additional electrophysiological properties of the neurone are a priori known. See reference for details and more.
40.  Chirp stimulus responses in a morphologically realistic model (Narayanan and Johnston, 2007)
...we built a multicompartmental model with a morphologically realistic three-dimensional reconstruction of a CA1 pyramidal neuron. The only active conductance we added to the model was the h conductance. ... We conclude that experimentally observed gradient in density of h channels could theoretically account for experimentally observed gradient in resonance properties (Narayanan and Johnston, 2007).
41.  CN Octopus Cell: Ih current (Bal, Oertel 2000)
NEURON mod files for the Ih current from the paper R. Bal and D. Oertel Hyperpolarization-Activated, Mixed-Cation Current (Ih) in Octopus Cells of the Mammalian Cochlear Nucleus, J. Neurophysiol. 84, 806-817 (2000). Contact if you have any questions about the implementation of the model.
42.  Consequences of HERG mutations in the long QT syndrome (Clancy, Rudy 2001)
This study demonstrates which mutations can prolong APD sufficiently to generate early afterdepolarizations (EADs), which may trigger life-threatening arrhythmias. The severity of the phenotype is shown to depend on the specific kinetic changes and how they affect I(Kr) during the time course of the action potential. See paper for more and details.
43.  Dendritic L-type Ca currents in motoneurons (Carlin et al 2000)
A component of recorded currents demonstrated kinetics consistent with a current originating at a site spatially segregated from the soma. In response to step commands this component was seen as a late-onset, low amplitude persistent current whilst in response to depolarizing-repolarizing ramp commands a low voltage clockwise current hysteresis was recorded. Simulations using a neuromorphic motoneuron model could reproduce these currents only if a noninactivating calcium conductance was placed in the dendritic compartments.
44.  Dentate granule cell: mAHP & sAHP; SK & Kv7/M channels (Mateos-Aparicio et al., 2014)
The model is based on that of Aradi & Holmes (1999; Journal of Computational Neuroscience 6, 215-235). It was used to help understand the contribution of M and SK channels to the medium afterhyperpolarization (mAHP) following one or seven spikes, as well as the contribution of M channels to the slow afterhyperpolarization (sAHP). We found that SK channels are the main determinants of the mAHP, in contrast to CA1 pyramidal cells where the mAHP is primarily caused by the opening of M channels. The model reproduced these experimental results, but we were unable to reproduce the effects of the M-channel blocker XE991 on the sAHP. It is suggested that either the XE991-sensitive component of the sAHP is not due to M channels, or that when contributing to the sAHP, these channels operate in a mode different from that associated with the mAHP.
45.  Dentate Gyrus Feed-forward inhibition (Ferrante et al. 2009)
In this paper, the model was used to show how that FFI can change a steeply sigmoidal input-output (I/O) curve into a double-sigmoid typical of buffer systems.
46.  DG granule cell: I-A model (Beck et al 1992)
NEURON mod files for the I-A current from the paper: Beck H, Ficker E, Heinemann U. Properties of two voltage-activated potassium currents in acutely isolated juvenile rat dentate gyrus granule cells. J. Neurophysiol. 68, 2086-2099 (1992) Contact if you have any questions about the implementation of the model.
47.  Dopamine neuron of the vent. periaqu. gray and dors. raphe nucleus (vlPAG/DRN) (Dougalis et al 2017)
The following computer model describes the electrophysiological properties of dopamine (DA) neurons of the ventrolateral periaquaductal gray and dorsal raphe nucleus (vlPAG/DRN). the model and how to replicate Figures 7-10 of the manuscript (Dougalis et al., 2017 J Comput Neurosci). SUMMARY: We have conducted a voltage-clamp study to provide a kinetic description of major sodium, potassium and calcium ionic currents operant on adult DA vlPAG/DRN neurons in brain slices obtained from pitx3-GFP mice. Based on experimentally derived voltage-clamp data, we then constructed a simplified, conductance-based, Hodgkin and Huxley-type, computer model and validated its behaviour against in vitro neurophysiological data. Using simulations in the computational DA model, we explored the contribution of individual ionic currents in vlPAG/DRN DA neuron’s spontaneous firing, pacemaker frequency and threshold for spike frequency adaptation in silico. The data presented here extend our previous physiological characterization (Dougalis et al. 2012) and argue that DA neurons of the vlPAG/DRN express autorhythmicity in the absence of synaptic transmission via the interplay of potassium and sodium currents without the absolute need of calcium currents. The properties of the ionic currents recorded here (IH current, IA current), the lack of small oscillating potentials in the presence of sodium channel blockers taken together with the mechanisms for autorhythmicity (reliance more on sodium rather than calcium currents) also support further the idea that vlPAG/DRN DA neurons are operationally similar to VTA, rather than SNc, DA neurons. In particular, the properties of a slowly inactivating IA current in conjunction with the small and slowly activating IH current described herein pinpoint that vlPAG/DRN DA neurons are most similar to prefrontal cortex or medial shell of nucleus accumbens projecting DA neurons (see Lammel et al. 2008, 2011).
48.  Dorsal root ganglion (DRG) neuronal model (Kovalsky et al. 2009)
This model, diverged from oscillatory parameters seen in live cells and failed to produce characteristic ectopic discharge patterns. Here we show that use of a more complete set of Na+ conductances--which includes several delayed components--enables simulation of the entire repertoire of oscillation-triggered electrogenic phenomena seen in live dorsal root ganglion (DRG) neurons. This includes a physiological window of induction and natural patterns of spike discharge. An INa+ component at 2-20 ms was particularly important, even though it represented only a tiny fraction of overall INa+ amplitude. With the addition of a delayed rectifier IK+ the singlet firing seen in some DRG neurons can also be simulated. The model reveals the key conductances that underlie afferent ectopia, conductances that are potentially attractive targets in the search for more effective treatments of neuropathic pain.
49.  DRG neuron models investigate how ion channel levels regulate firing properties (Zheng et al 2019)
We present computational models for an Abeta-LTMR (low-threshold mechanoreceptor) and a C-LTMR expressing four Na channels and four K channels to investigate how the expression level of Kv1 and Kv4 regulate number of spikes (repetitive firing) and onset latency to action potentials in Abeta-LTMRs and C-LTMRs, respectively.
50.  Effects of eugenol on the firing of action potentials in NG108-15 neurons (Huang et al. 2011)
"Rationale: Eugenol (EUG, 4-allyl-2-methoxyphenol), the main component of essential oil extracted from cloves, has various uses in medicine because of its potential to modulate neuronal excitability. However, its effects on the ionic mechanisms remains incompletely understood. Objectives: We aimed to investigate EUG`s effects on neuronal ionic currents and excitability, especially on voltage-gated ion currents, and to verify the effects on a hyperexcitability-temporal lobe seizure model. Methods: With the aid of patch-clamp technology, we first investigated the effects of EUG on ionic currents in NG108-15 neuronal cells differentiated with cyclic AMP. We then used modified Pinsky-Rinzel simulation modeling to evaluate its effects on spontaneous action potentials (APs). Finally, we investigated its effects on pilocarpine-induced seizures in rats. Results: EUG depressed the transient and late components of INa in the neurons. It not only increased the degree of INa inactivation, but specifically suppressed the non-inactivating INa (INa(NI)). ... In addition, EUG diminished L-type Ca2+ current and delayed rectifier K+ current only at higher concentrations. EUG`s effects on APs frequency reduction was verified by the simulation modeling. In pilocarpine-induced seizures, the EUG-treated rats showed no shorter seizure latency but a lower seizure severity and mortality than the control rats. ... Conclusion: The synergistic blocking effects of INa and INa(NI) contributes to the main mechanism through which EUG affects the firing of neuronal APs and modulate neuronal hyperexcitability such as pilocarpine-induced temporal lobe seizures."
51.  Effects of KIR current inactivation in NAc Medium Spiny Neurons (Steephen and Manchanda 2009)
"Inward rectifying potassium (KIR) currents in medium spiny (MS) neurons of nucleus accumbens inactivate significantly in ~40% of the neurons but not in the rest, which may lead to differences in input processing by these two groups. Using a 189-compartment computational model of the MS neuron, we investigate the influence of this property using injected current as well as spatiotemporally distributed synaptic inputs. Our study demonstrates that KIR current inactivation facilitates depolarization, firing frequency and firing onset in these neurons. ..."
52.  Effects of neural morphology on global and focal NMDA-spikes (Poleg-Polsky 2015)
This entry contains the NEURON files required to recreate figures 4-8 of the paper "Effects of Neural Morphology and Input Distribution on Synaptic Processing by Global and Focal NMDA-spikes" by Alon Poleg-Polsky
53.  Efffect of propofol on potassium current in cardiac H9c2 cells (Liu et al. 2008)
"... The effects of propofol, an intravenous anesthetic agent with a distinct chemical structure, on ion currents of differentiated clonal cardiac (H9c2) cells were investigated in this study. Propofol ... suppressed the amplitude of delayed rectifier K(+) current (I(K(DR))) in a concentration-dependent manner with an IC(50) value of 36 muM. ... Propofol (30 muM) had no effect on erg-mediated K(+) current in these cells; however, it suppressed L-type Ca(2+) current (I(Ca,L)) of cardiac and skeletal types to a similar extent. ... Numerical simulations of I(K(DR)) based on a Markovian model reproduce the experimental results and show that propofol-induced blockade of I(K(DR)) is associated with an decrease in forward rate of the activation process and an increase in transitional rate into the inactivated state. ..."
54.  Efficient Method for Computing Synaptic Conductance (Destexhe et al 1994)
A simple model of transmitter release is used to solve first order kinetic equations of neurotransmiter/receptor binding. This method is applied to a glutamate and gabaa receptor. See reference for more details. The method is extended to more complex kinetic schemes in a seperate paper (Destexhe et al J Comp Neuro 1:195-231, 1994). Application to AMPA, NMDA, GABAA, and GABAB receptors is given in a book chapter (Destexhe et al In: The Neurobiology of Computation, Edited by Bower, J., Kluwer Academic Press, Norwell MA, 1995, pp. 9-14.) More information and papers at and through email:
55.  Endocannabinoid dynamics gate spike-timing dependent depression and potentiation (Cui et al 2016)
The endocannabinoid (eCB) system is considered involved in synaptic depression. Recent reports have also linked eCBs to synaptic potentiation. However it is not known how eCB signaling may support such bidirectionality. To question the mechanisms of this phenomena in spike-timing dependent plasticity (STDP) at corticostriatal synapses, we combined electrophysiology experiments with biophysical modeling. We demonstrate that STDP is controlled by eCB levels and dynamics: prolonged and moderate levels of eCB lead to eCB-mediated long-term depression (eCB-tLTD) while short and large eCB transients produce eCB-mediated long-term potentiation (eCB-tLTP). Therefore, just like neurotransmitters glutamate or GABA, eCB form a bidirectional system.
56.  Enhancing the HH eqs: simulations based on the first publication in Biophys J (Moore 2015)
"The experiments in the Cole and Moore article in the first issue of the Biophysical Journal provided the first independent experimental confirmation of the Hodgkin-Huxley (HH) equations. A log-log plot of the K current versus time showed that raising the HH variable n to the sixth power provided the best fit to the data. Subsequent simulations using n6 and setting the resting potential at the in vivo value simplifies the HH equations by eliminating the leakage term. ..."
57.  ERG current in repolarizing plateau potentials in dopamine neurons (Canavier et al 2007)
"Blocking the small-conductance (SK) calcium-activated potassium channel promotes burst firing in dopamine neurons both in vivo and in vitro. ... We focus on the underlying plateau potential oscillation generated in the presence of both apamin and TTX, so that action potentials are not considered. We find that although the plateau potentials are mediated by a voltage-gated Ca2+ current, they do not depend on the accumulation of cytosolic Ca2+, then use a computational model to test the hypothesis that the slowly voltage-activated ether-a-go-go–related gene (ERG) potassium current repolarizes the plateaus. The model, which includes a material balance on calcium, is able to reproduce the time course of both membrane potential and somatic calcium concentration, and can also mimic the induction of plateau potentials by the calcium chelator BAPTA." See paper for more.
58.  Evaluation of stochastic diff. eq. approximation of ion channel gating models (Bruce 2009)
Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. ... The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.
59.  Excitability of the soma in central nervous system neurons (Safronov et al 2000)
The ability of the soma of a spinal dorsal horn neuron, a spinal ventral horn neuron, and a hippocampal pyramidal neuron to generate action potentials was studied using experiments and computer simulations. By comparing recordings ... of a dorsal horn neuron with simulated responses, it was shown that computer models can be adequate for the study of somatic excitability. The modeled somata of both spinal neurons were unable to generate action potentials, showing only passive and local responses to current injections. ... In contrast to spinal neurons, the modeled soma of the hippocampal pyramidal neuron generated spikes with an overshoot of +9 mV. It is concluded that the somata of spinal neurons cannot generate action potentials and seem to resist their propagation from the axon to dendrites. ... See paper for more and details.
60.  Experimental and modeling studies of desensitization of P2X3 receptors (Sokolova et al. 2006)
"The function of ATP-activated P2X3 receptors involved in pain sensation is modulated by desensitization, a phenomenon poorly understood. The present study used patch-clamp recording from cultured rat or mouse sensory neurons and kinetic modeling to clarify the properties of P2X3 receptor desensitization. ... Desensitization properties were well accounted for by a cyclic model in which receptors could be desensitized from either open or closed states. Recovery was assumed to be a multistate process with distinct kinetics dependent on the agonist-dependent dissociation rate from desensitized receptors. ... By using subthreshold concentrations of an HAD (high-affinity desensitization)-potent agonist, it might be possible to generate sustained inhibition of P2X3 receptors for controlling chronic pain."
61.  Febrile seizure-induced modifications to Ih (Chen et al 2001)
Modeling and experiments in the paper Chen K,Aradi I, Thom N,Eghbal-Ahmadi M, Baram TZ, and Soltesz I (2001) support the hypothesis that modified Ih currents strongly influence inhibitory inputs in CA1 cells and that the depolarizing shift in Ih activation plays a primary role in this process. Please see the paper for details. Some modeling details are available at Correspondance should be addressed to (modeling was done by Ildiko Aradi,
62.  FS Striatal interneuron: K currents solve signal-to-noise problems (Kotaleski et al 2006)
... We show that a transient potassium (KA) current allows the Fast Spiking (FS) interneuron to strike a balance between sensitivity to correlated input and robustness to noise, thereby increasing its signal-to-noise ratio (SNR). First, a compartmental FS neuron model was created to match experimental data from striatal FS interneurons in cortex–striatum–substantia nigra organotypic cultures. Densities of sodium, delayed rectifier, and KA channels were optimized to replicate responses to somatic current injection. Spontaneous AMPA and GABA synaptic currents were adjusted to the experimentally measured amplitude, rise time, and interevent interval histograms. Second, two additional adjustments were required to emulate the remaining experimental observations. GABA channels were localized closer to the soma than AMPA channels to match the synaptic population reversal potential. Correlation among inputs was required to produce the observed firing rate during up-states. In this final model, KA channels were essential for suppressing down-state spikes while allowing reliable spike generation during up-states. ... Our results suggest that KA channels allow FS interneurons to operate without a decrease in SNR during conditions of increased dopamine, as occurs in response to reward or anticipated reward. See paper for more and details.
63.  Gap junction coupled network of striatal fast spiking interneurons (Hjorth et al. 2009)
Gap junctions between striatal FS neurons has very weak ability to synchronise spiking. Input uncorrelated between neighbouring neurons is shunted, while correlated input is not.
64.  Hippocampus CA1 pyramidal model with Na channel exhibiting slow inactivation (Menon et al. 2009)
These NEURON simulations show the effect of prolonged inactivation of sodium channels on attenuation of trains of backpropagating action potentials (bAPs). The new sodium channel model is a Markov model derived using a state-mutating genetic algorithm, as described in the paper.
65.  Hodgkin-Huxley model of persistent activity in PFC neurons (Winograd et al. 2008) (NEURON python)
The paper demonstrate a form of graded persistent activity activated by hyperpolarization. This phenomenon is modeled based on a slow calcium regulation of Ih, similar to that introduced earlier for thalamic neurons (see Destexhe et al., J Neurophysiol. 1996). The only difference is that the calcium signal is here provided by the high-threshold calcium current (instead of the low-threshold calcium current in thalamic neurons).
66.  Hodgkin-Huxley model of persistent activity in prefrontal cortex neurons (Winograd et al. 2008)
The paper demonstrate a form of graded persistent activity activated by hyperpolarization. This phenomenon is modeled based on a slow calcium regulation of Ih, similar to that introduced earlier for thalamic neurons (see Destexhe et al., J Neurophysiol. 1996). The only difference is that the calcium signal is here provided by the high-threshold calcium current (instead of the low-threshold calcium current in thalamic neurons).
67.  Hodgkin–Huxley model with fractional gating (Teka et al. 2016)
We use fractional order derivatives to model the kinetic dynamics of the gate variables for the potassium and sodium conductances of the Hodgkin-Huxley model. Our results show that power-law dynamics of the different gate variables result in a wide range of action potential shapes and spiking patterns, even in the case where the model was stimulated with constant current. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron.
68.  Hysteresis in voltage gating of HCN channels (Elinder et al 2006, Mannikko et al 2005)
We found that HCN2 and HCN4 channels expressed in oocytes from the frog Xenopus laevis do not display the activation kinetic changes that we (previously) observed in spHCN and HCN1. However, HCN2 and HCN4 channels display changes in their tail currents, suggesting that these channels also undergo mode shifts and that the conformational changes underlying the mode shifts are due to conserved aspects of HCN channels. With computer modelling, we show that in channels with relatively slow opening kinetics and fast mode-shift transitions, such as HCN2 and HCN4 channels, the mode shift effects are not readily observable, except in the tail kinetics. Computer simulations of sino-atrial node action potentials suggest that the HCN2 channel, together with the HCN1 channel, are important regulators of the heart firing frequency and that the mode shift is an important property to prevent arrhythmic firing. We conclude that although all HCN channels appear to undergo mode shifts – and thus may serve to prevent arrhythmic firing – it is mainly observable in ionic currents from HCN channels with faster kinetics. See papers for more and details.
69.  I A in Kenyon cells resemble Shaker currents (Pelz et al 1999)
Cultured Kenyon cells from the mushroom body of the honeybee, Apis mellifera, show a voltage-gated, fast transient K1 current that is sensitive to 4-aminopyridine, an A current. The kinetic properties of this A current and its modulation by extracellular K1 ions were investigated in vitro with the whole cell patch-clamp technique. The A current was isolated from other voltage-gated currents either pharmacologically or with suitable voltage-clamp protocols. Hodgkin- and Huxley-style mathematical equations were used for the description of this current and for the simulation of action potentials in a Kenyon cell model. The data of the A current were incorporated into a reduced computational model of the voltage-gated currents of Kenyon cells. In addition, the model contained a delayed rectifier K current, a Na current, and a leakage current. The model reproduces several experimental features and makes predictions. See paper for details and results.
70.  INa and IKv4.3 heterogeneity in canine LV myocytes (Flaim et al 2006)
"The roles of sustained components of INa and IKv43 in shaping the action potentials (AP) of myocytes isolated from the canine left ventricle (LV) have not been studied in detail. Here we investigate the hypothesis that these two currents can contribute substantially to heterogeneity of early repolarization and arrhythmic risk.... The resulting simulations illustrate ways in which KChIP2- and Ca2+- dependent control of IKv43 can result in a sustained outward current that can neutralize INaL in a rate- and myocyte subtype-dependent manner. Both these currents appear to play significant roles in modulating AP duration and rate dependence in midmyocardial myocytes. ... By design, these models allow upward integration into organ models or may be used as a basis for further investigations into cellular heterogeneities." See paper for more and details.
71.  Inhibition and glial-K+ interaction leads to diverse seizure transition modes (Ho & Truccolo 2016)
"How focal seizures initiate and evolve in human neocortex remains a fundamental problem in neuroscience. Here, we use biophysical neuronal network models of neocortical patches to study how the interaction between inhibition and extracellular potassium ([K+]o) dynamics may contribute to different types of focal seizures. Three main types of propagated focal seizures observed in recent intracortical microelectrode recordings in humans were modelled ..."
72.  Interneuron Specific 3 Interneuron Model (Guet-McCreight et al, 2016)
In this paper we develop morphologically detailed multi-compartment models of Hippocampal CA1 interneuron specific 3 interneurons using cell current-clamp recordings and dendritic calcium imaging data. In doing so, we developed several variant models, as outlined in the associated README.html file.
73.  Ion channel modeling with whole cell and a genetic algorithm (Gurkiewicz and Korngreen 2007)
"... Here we show that a genetic search algorithm in combination with a gradient descent algorithm can be used to fit whole-cell voltage-clamp data to kinetic models with a high degree of accuracy. Previously, ion channel stimulation traces were analyzed one at a time, the results of these analyses being combined to produce a picture of channel kinetics. Here the entire set of traces from all stimulation protocols are analysed simultaneously. The algorithm was initially tested on simulated current traces produced by several Hodgkin-Huxley–like and Markov chain models of voltage-gated potassium and sodium channels. ... Finally, the algorithm was used for finding the kinetic parameters of several voltage-gated sodium and potassium channels models by matching its results to data recorded from layer 5 pyramidal neurons of the rat cortex in the nucleated outside-out patch configuration. The minimization scheme gives electrophysiologists a tool for reproducing and simulating voltage-gated ion channel kinetics at the cellular level."
74.  Ionic current model of a Hypoglossal Motoneuron (Purvis & Butera 2005)
"We have developed a single-compartment, electrophysiological, hypoglossal motoneuron (HM) model based primarily on experimental data from neonatal rat HMs. The model is able to reproduce the fine features of the HM action potential: the fast afterhyperpolarization, the afterdepolarization, and the medium-duration afterhyperpolarization (mAHP). The model also reproduces the repetitive firing properties seen in neonatal HMs and replicates the neuron’s response to pharmacological experiments. The model was used to study the role of specific ionic currents in HM firing and how variations in the densities of these currents may account for age dependent changes in excitability seen in HMs. ..."
75.  Ionic mechanisms of bursting in CA3 pyramidal neurons (Xu and Clancy 2008)
"... We present a single-compartment model of a CA3 hippocampal pyramidal neuron based on recent experimental data. We then use the model to determine the roles of primary depolarizing currents in burst generation. The single compartment model incorporates accurate representations of sodium (Na+) channels (NaV1.1) and T-type calcium (Ca2+) channel subtypes (CaV3.1, CaV3.2, and CaV3.3). Our simulations predict the importance of Na+ and T-type Ca2+ channels in hippocampal pyramidal cell bursting and reveal the distinct contribution of each subtype to burst morphology. We also performed fastslow analysis in a reduced comparable model, which shows that our model burst is generated as a result of the interaction of two slow variables, the T-type Ca2+ channel activation gate and the Ca2+-dependent potassium (K+) channel activation gate. The model reproduces a range of experimentally observed phenomena including afterdepolarizing potentials, spike widening at the end of the burst, and rebound. Finally, we use the model to simulate the effects of two epilepsy-linked mutations: R1648H in NaV1.1 and C456S in CaV3.2, both of which result in increased cellular excitability."
76.  IP3R model comparison (Hituri and Linne 2013)
In this study, four models of IP3R (Othmer and Tang, 1993; Dawson et al., 2003; Fraiman and Dawson, 2004; Doi et al., 2005) were selected among many to examine their behavior and compare them with experimental data available in literature. The provided MATLAB script (run_IP3R_P0.m) will run the simulations and plot Figure 2A in the paper.
77.  Kinetic NMDA receptor model (Kampa et al 2004)
This kinetic NMDA receptor model is based on voltage-clamp recordings of NMDA receptor-mediated currents in nucleated patches of rat neocortical layer 5 pyramidal neurons (Kampa et al 2004 J Physiol), this model was fit with AxoGraph directly to experimental recordings in order to obtain the optimal values for the parameters. The demo shows the behaviour of a kinetic NMDA receptor model reproducing the data in figure 2. The NMDA receptor model uses realistic rates of magnesium block and its effects on channel desensitisation. Presynaptic transmitter release is necessary for glutamate binding to the receptor. This model was written by Bjoern Kampa, Canberra, 2004.
78.  Kinetic properties of voltage gated Na channel (Nayak and Sikdar 2007)
Here we illustrate novel non-linear properties of voltage gated Na+ channel induced by sustained membrane depolarization. In cell-attached patch clamp recordings of rNav1.2 channels expressed in CHO cells, we found complex non-linear changes in the molecular kinetic properties, including channel dwell times and unitary conductance of single Na+ channels that were dependent on the extent of conditioning membrane depolarization. A “molecular memory” phenomenon arises at longer depolarization characterized by clusters of dwell time events and strong autocorrelation in dwell times. Hidden Markov Modeling (HMM) ... suggested a possible explanation to the memory phenomenon. See paper for more and details.
79.  Kinetic synaptic models applicable to building networks (Destexhe et al 1998)
Simplified AMPA, NMDA, GABAA, and GABAB receptor models useful for building networks are described in a book chapter. One reference paper synthesizes a comprehensive general description of synaptic transmission with Markov kinetic models which is applicable to modeling ion channels, synaptic release, and all receptors. Also a simple introduction to this method is given in a seperate paper Destexhe et al Neural Comput 6:14-18 , 1994). More information and papers at and through email:
80.  Kinetics of the P2X7 receptor as expressed in Xenopus oocytes (Riedel et al. 2007a,b)
"Human P2X7 receptors were expressed in Xenopus laevis oocytes and single channels were recorded using the patch-clamp technique in the outside-out configuration. ATP4- evoked two types of P2X7 receptor-mediated single channel currents characterized by short-lived and long-lived openings. ... The kinetics of the short channel openings at negative membrane potentials fitted well to a linear C-C-C-O model with two ATP4- binding steps at equal binding sites ...." and "Using the patch-clamp method, we studied the influence of external alkali and organic monovalent cations on the single-channel properties of the adenosine triphosphate (ATP)-activated recombinant human P2X(7) receptor." See the references for more.
81.  KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
The output of the cerebellum to the motor axis of the central nervous system is orchestrated mainly by synaptic inputs and intrinsic pacemaker activity of deep cerebellar nuclear (DCN) projection neurons. Herein, we demonstrate that the soma of these cells is enriched with KV1 channels produced by mandatory multi-merization of KV1.1, 1.2 alpha andKV beta2 subunits. Being constitutively active, the K+ current (IKV1) mediated by these channels stabilizes the rate and regulates the temporal precision of self-sustained firing of these neurons. ... Through the use of multi-compartmental modelling and ... the physiological significance of the described functions for processing and communication of information from the lateral DCN to thalamic relay nuclei is established.
82.  Kv4.3, Kv1.4 encoded K channel in heart cells & tachy. (Winslow et al 1999, Greenstein et al 2000)
(1999) We present a model of the canine midmyocardial ventricular action potential and Ca2+ transient. The model is used to estimate the degree of functional upregulation and downregulation of Na/Ca exchanger protein and sarcoplasmic reticulum Ca ATPase in heart failure using data obtained from 2 different experimental protocols. (2000): A model of canine I:(to1) (the Ca(2+)-independent transient outward current) is formulated as the combination of Kv4.3 and Kv1.4 currents and is incorporated into an existing canine ventricular myocyte model. Simulations demonstrate strong coupling between L-type Ca(2+) current and I:(Kv4.3) and predict a bimodal relationship between I:(Kv4.3) density and APD whereby perturbations in I:(Kv4.3) density may produce either prolongation or shortening of APD, depending on baseline I:(to1) current level. See each paper for more and details.
83.  Kv4.3, Kv1.4 encoded K(+) channel in heart cells (Greenstein et al 2000) (XPP)
A model of canine I:(to1) (the Ca(2+)-independent transient outward current) is formulated as the combination of Kv4.3 and Kv1.4 currents and is incorporated into an existing canine ventricular myocyte model. Simulations demonstrate strong coupling between L-type Ca(2+) current and I:(Kv4.3) and predict a bimodal relationship between I:(Kv4.3) density and APD whereby perturbations in I:(Kv4.3) density may produce either prolongation or shortening of APD, depending on baseline I:(to1) current level. The model files were submitted by: Dr. Sheng-Nan Wu, Dr. Ruey J. Sung, Ya-Jean Wang and Jiun-Shian Wu e-mail:
84.  Low Threshold Calcium Currents in TC cells (Destexhe et al 1998)
In Destexhe, Neubig, Ulrich, and Huguenard (1998) experiments and models examine low threshold calcium current's (IT, or T-current) distribution in thalamocortical (TC) cells. Multicompartmental modeling supports the hypothesis that IT currents have a density at least several fold higher in the dendrites than the soma. The IT current contributes significantly to rebound bursts and is thought to have important network behavior consequences. See the paper for details. See also Correspondance may be addressed to Alain Destexhe:
85.  Low Threshold Calcium Currents in TC cells (Destexhe et al 1998) (Brian)
R Brette's implementation in Brian 2 of Destexhe et al 1998's model. The author's original code is also available from ModelDB with accession number 279 (yes, was one of the first models in ModelDB)!
86.  Mammalian Ventricular Cell (Beeler and Reuter 1977)
This classic model of ventricular myocardial fibres was implemented by Francois Gannier. "... Four individual components of ionic current were formulated mathematically in terms of Hodgkin-Huxley type equations. The model incorporates two voltage- and time-dependent inward currents, the excitatory inward sodium current, illa, and a secondary or slow inward current, is, primarily carried by calcium ions. A time-independent outward potassium current, iK1, exhibiting inward-going rectification, and a voltage- and time-dependent outward current, i.1, primarily carried by potassium ions, are further elements of the model...."
87.  Markov Chain-based Stochastic Shielding Hodgkin Huxley Model (Schmandt, Galan 2012)
88.  Markov models of SCN1A (NaV1.1) applied to abnormal gating and epilepsy (Clancy and Kass 2004)
"Recently, some forms of idiopathic epilepsy have been causally related to genetic mutations in neuronal ion channels. To understand disease mechanisms, it is crucial to understand how a gene defect can disrupt channel gating, which in turn can affect complex cellular dynamic processes. We develop a theoretical Markovian model of the neuronal Na+ channel NaV1.1 to explore and explain gating mechanisms underlying cellular excitability and physiological and pathophysiological mechanisms of abnormal neuronal excitability in the context of epilepsy. ..."
89.  Markovian model for cardiac sodium channel (Clancy, Rudy 2002)
Complex physiological interactions determine the functional consequences of gene abnormalities and make mechanistic interpretation of phenotypes extremely difficult. A recent example is a single mutation in the C terminus of the cardiac Na(+) channel, 1795insD. The mutation causes two distinct clinical syndromes, long QT (LQT) and Brugada, leading to life-threatening cardiac arrhythmias. Coexistence of these syndromes is seemingly paradoxical; LQT is associated with enhanced Na(+) channel function, and Brugada with reduced function. Using a computational approach, we demonstrate that the 1795insD mutation exerts variable effects depending on the myocardial substrate. We develop Markov models of the wild-type and 1795insD cardiac Na(+) channels. See reference for more and details. The model files were submitted by: Dr. Jiun-Shian Wu, Dr. Sheng-Nan Wu, Dr. Ruey J. Sung, Han-Dong Chang.
90.  Markovian model for single-channel recordings of Ik_1 in ventricular cells (Matsuoka et al 2003)
The interaction between many currents in a cardiac ventricular model are examined in this paper. One of the main contributions come from a current called IK_1. An XPP version of this model was supplied by Hsieng-Jung Lai, Jiun-Shian Wu, Sheng-Nan Wu, Ruey J. Sung, Han-Dong Chang. Please see paper and model for more and details.
91.  Model for K-ATP mediated bursting in mSNc DA neurons (Knowlton et al 2018)
"Burst firing in medial substantia nigra dopamine (mSN DA) neurons has been selectively linked to novelty-induced exploration behavior in mice. Burst firing in mSN DA neurons, in contrast to lateral SN DA neurons, requires functional ATP-sensitive potassium channels (K-ATP) both in vitro and in vivo. However, the precise role of K-ATP channels in promoting burst firing is un-known. We show experimentally that L-type calcium channel activity in mSN DA neurons en-hances open probability of K-ATP channels. We then generated a mathematical model to study the role of Ca2+ dynamics driving K-ATP channel function in mSN DA neurons during bursting. ..."
92.  Model of calcium oscillations in olfactory cilia (Reidl et al. 2006)
Simulation of experiments on olfactory receptor neurons (ORNs). Focussing on the negative feedback that calcium (through calmodulin) has on its own influx through CNG channels, this model is able to reproduce both calcium oscillations as well as adaptation behaviour as seen in experiments done with ORNs.
93.  Modeling interactions in Aplysia neuron R15 (Yu et al 2004)
"The biophysical properties of neuron R15 in Aplysia endow it with the ability to express multiple modes of oscillatory electrical activity, such as beating and bursting. Previous modeling studies examined the ways in which membrane conductances contribute to the electrical activity of R15 and the ways in which extrinsic modulatory inputs alter the membrane conductances by biochemical cascades and influence the electrical activity. The goals of the present study were to examine the ways in which electrical activity influences the biochemical cascades and what dynamical properties emerge from the ongoing interactions between electrical activity and these cascades." See paper for more and details.
94.  Models of Na channels from a paper on the PKC control of I Na,P (Baker 2005)
"The tetrodotoxin-resistant (TTX-r) persistent Na(+) current, attributed to Na(V)1.9, was recorded in small (< 25 mum apparent diameter) dorsal root ganglion (DRG) neurones cultured from P21 rats and from adult wild-type and Na(V)1.8 null mice. ... Numerical simulation of the up-regulation qualitatively reproduced changes in sensory neurone firing properties. ..." Note: models of NaV1.8 and NaV1.9 and also persistent and transient Na channels that collectively model Nav 1.1, 1.6, and 1.7 are present in this model.
95.  ModFossa: a library for modeling ion channels using Python (Ferneyhough et al 2016)
96.  MyFirstNEURON (Houweling, Sejnowski 1997)
MyFirstNEURON is a NEURON demo by Arthur Houweling and Terry Sejnowski. Perform experiments from the book 'Electrophysiology of the Neuron, A Companion to Shepherd's Neurobiology, An Interactive Tutorial' by John Huguenard & David McCormick, Oxford University Press 1997, or design your own one or two cell simulation.
97.  Na channel mutations in the dentate gyrus (Thomas et al. 2009)
These are source files to generate the data in Figure 6 from "Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability" Thomas EA, Reid CA, Petrou S, Epilepsia (2009)
98.  Neocortical Layer I: I-A and I-K (Zhou, Hablitz 1996)
NEURON mod files for the I-A and I-K currents from the paper: Zhou FM, Hablitz JJ. Layer I neurons of the rat neocortex. II. Voltage-dependent outward currents. J Neurophysiol 1996 76:668-82.
99.  Nerve terminal currents at lizard neuromuscular junction (Lindgren, Moore 1989)
Loose patch clamp measurement of presynaptic ionic currents at lizard neuromuscular junction compared with computer simulations.
100.  Neurophysiological impact of inactivation pathways in A-type K+ channels (Fineberg et al 2012)
These models predict the differential effects of varying pathways of inactivation (closed state inactivation, CSI, or open state inactivation, OSI). Specifically, Markov models of Kv4 potassium channels with CSI or CSI+OSI were inserted into the CA1 pyramidal neuron model from Migliore et al (1999; ModelDB accession #2796) to determine the neurophysiological impact of inactivation pathways. Furthermore, Markov models of Kv4.2 and Kv3.4 channels are used to illustrate a method by which to test what pathway of inactivation a channel uses.
101.  NMDA receptor saturation (Chen et al 2001)
Experiments and modeling reported in the paper Chen N, Ren J, Raymond LA, and Murphy T (2001) support the hypothesis that glutamate has a relatively lower potency at NMDARs than previously thought from agonist application under equilibrium conditions. Further information and reprint requests are available from Dr T.H. Murphy thmurphy at
102.  Novel Na current with slow de-inactivation (Tsutsui, Oka 2002)
The authors found a novel Na current in teleost thalamic nuclei was well described by the m^3 h Hodgkin-Huxley model. The kinetic parameters derived from their experiments (see the reference for details) revealed that the h gate had a large time constant (~100ms at -80 to -50mV). This explains the thalamic neurons long refractory period and the gradual recovery of AP amplitude as the inter spike interval grows.
103.  O-LM interneuron model (Lawrence et al. 2006)
Exploring the kinetics and distribution of the muscarinic potassium channel, IM, in 2 O-LM interneuron morphologies. Modulation of the ion channel by drugs such as XE991 (antagonist) and retigabine (agonist) are simulated in the models to examine the role of IM in spiking properties.
104.  Olfactory bulb granule cell: effects of odor deprivation (Saghatelyan et al 2005)
The model supports the experimental findings on the effects of postnatal odor deprivation, and shows that a -10mV shift in the Na activation or a reduction in the dendritic length of newborn GC could independently explain the observed increase in excitability.
105.  Olfactory Mitral Cell: I-A and I-K currents (Wang et al 1996)
NEURON mod files for the I-A and I-K currents from the paper: X.Y. Wang, J.S. McKenzie and R.E. Kemm, Whole-cell K+ currents in identified olfactory bulb output neurones of rats. J Physiol. 1996 490.1:63-77. Please see the readme.txt included in the model file for more information.
106.  Olfactory Periglomerular Cells: I-h kinetics (Cadetti, Belluzzi 2001)
NEURON mod files for the Ih current from the paper: Cadetti L, Belluzzi O. Hyperpolarisation-activated current in glomerular cells of the rat olfactory bulb. Neuroreport 12:3117-20 (2001).
107.  Olfactory receptor neuron model (Dougherty et al 2005)
Demonstration of ORN model by Dougherty, Wright and Yew (2005) PNAS 102: 10415-10420. This program, dwy_pnas_demo2, simulates the transduction current response of a single olfactory receptor neuron being stimulated by an odorant plume. The program is interactive in that a user can tweak parameter values and stimulus conditions. Also, users can save a configuration in a mat-file or export all aspects to a directory of text files. These text files can be read by other programs. There is also an import facility for importing text files from a directory that allows the user to specify their own data, pulses and parameters.
108.  On stochastic diff. eq. models for ion channel noise in Hodgkin-Huxley neurons (Goldwyn et al. 2010)
" ... We analyze three SDE models that have been proposed as approximations to the Markov chain model: one that describes the states of the ion channels and two that describe the states of the ion channel subunits. We show that the former channel-based approach can capture the distribution of channel noise and its effect on spiking in a Hodgkin-Huxley neuron model to a degree not previously demonstrated, but the latter two subunit-based approaches cannot. ..."
109.  Pancreatic Beta Cell signalling pathways (Fridlyand & Philipson 2016) (MATLAB)
This is a 3rd party implementation of Fridlyand & Philipson 2016 who's abstract begins "Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. ..."
110.  Periodicity in Na channel properties alters model neuron excitability (Majumdar and Sikdar 2007)
"... We have shown earlier that the duration and amplitude of a prolonged depolarization alter all the steady state and kinetic parameters of rNav1.2a voltage gated Na channel in a pseudo-oscillatory fashion. In the present study, we show that the Hodgkin–Huxley voltage and time dependent rate constants of activation (am and bm) and fast inactivation (ah and bh), obtained from the analyses of Na currents and steady state activation and inactivation plots, following application of prepulses in both slow (1–100 s) and fast (100–1000 ms) ranges, vary with the duration of a prepulse in a pseudo-oscillatory manner. ..."
111.  Permeation and inactivation of CaV1.2 Ca2+ channels (Babich et al. 2007)
The authors present data and a kinetics model of the CaV1.2 channel supporting the idea that Ca2+ block of the pore generates the U-shaped inactivation curve.
112.  Properties of aconitine-induced block of KDR current in NG108-15 neurons (Lin et al. 2008)
"The effects of aconitine (ACO), a highly toxic alkaloid, on ion currents in differentiated NG108-15 neuronal cells were investigated in this study. ACO (0.3-30 microM) suppressed the amplitude of delayed rectifier K+ current (IK(DR)) in a concentration-dependent manner with an IC50 value of 3.1 microM. The presence of ACO enhanced the rate and extent of IK(DR) inactivation, although it had no effect on the initial activation phase of IK(DR). ... A modeled cell was designed to duplicate its inhibitory effect on spontaneous pacemaking. ... Taken together, the experimental data and simulations show that ACO can block delayed rectifier K+ channels of neurons in a concentration- and state-dependent manner. Changes in action potentials induced by ACO in neurons in vivo can be explained mainly by its blocking actions on IK(DR) and INa."
113.  Pyramidal Neuron Deep: K+ kinetics (Korngreen, Sakmann 2000)
NEURON mod files for the slow and fast K+ currents from the paper: Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients A. Korngreen and B. Sakmann, J.Physiol. 525.3, 621-639 (2000).
114.  Pyramidal neurons: IKHT offsets activation of IKLT to increase gain (Fernandez et al 2005)
This matlab model was supplied by Dr Fernandez. It provides the model specification for the below paper. The influence of a high threshold K current on low threshold K and Na currents (especially frequency-current relationships) are studied in the paper with both experiments and modeling. Please see the reference for more and details.
115.  PyRhO: A multiscale optogenetics simulation platform (Evans et al 2016)
"... we present an integrated suite of open-source, multi-scale computational tools called PyRhO. The purpose of developing PyRhO is three-fold: (i) to characterize new (and existing) opsins by automatically fitting a minimal set of experimental data to three-, four-, or six-state kinetic models, (ii) to simulate these models at the channel, neuron and network levels, and (iii) provide functional insights through model selection and virtual experiments in silico. The module is written in Python with an additional IPython/Jupyter notebook based GUI, allowing models to be fit, simulations to be run and results to be shared through simply interacting with a webpage. The seamless integration of model fitting algorithms with simulation environments (including NEURON and Brian2) for these virtual opsins will enable neuroscientists to gain a comprehensive understanding of their behavior and rapidly identify the most suitable variant for application in a particular biological system. ..."
116.  Rapid desynchronization of an electrically coupled Golgi cell network (Vervaeke et al. 2010)
Electrical synapses between interneurons contribute to synchronized firing and network oscillations in the brain. However, little is known about how such networks respond to excitatory synaptic input. In addition to detailed electrophysiological recordings and histological investigations of electrically coupled Golgi cells in the cerebellum, a detailed network model of these cells was created. The cell models are based on reconstructed Golgi cell morphologies and the active conductances are taken from an earlier abstract Golgi cell model (Solinas et al 2007, accession no. 112685). Our results show that gap junction coupling can sometimes be inhibitory and either promote network synchronization or trigger rapid network desynchronization depending on the synaptic input. The model is available as a neuroConstruct project and can executable scripts can be generated for the NEURON simulator.
117.  Rat alpha7 nAChR desensitization is modulated by W55 (Gay et al. 2008)
"The rat alpha7 nicotinic acetylcholine receptor (nAChR) can undergo rapid onset of desensitization; however, the mechanisms of desensitization are largely unknown. The contribution of a tryptophan (W) residue at position 55 of the rat alpha7 nAChR subunit, which lies within the beta2 strand, was studied by mutating it to other hydrophobic and/or aromatic amino acids, followed by voltage-clamp experiments in Xenopus oocytes. When mutated to alanine, the alpha7-W55A nAChR desensitized more slowly, and recovered from desensitization more rapidly, than wildtype alpha7 nAChRs. The contribution of desensitization was validated by kinetic modelling. ..."
118.  Rat phrenic motor neuron (Amini et al 2004)
We have developed a model for the rat phrenic motor neuron (PMN) that robustly replicates many experimentally observed behaviors of PMNs in response to pharmacological, ionic, and electrical perturbations using a single set of parameters.
119.  Reflected SDE Hodgkin-Huxley Model (Dangerfield et al. 2012)
Matlab code for simulating channel noise using the original Hodgkin-Huxley equations and a variant of the Hodkgin-Huxley model from (Bruce, Annals Bio Eng, Vol 36, pp 824-838, 2009). Methods used in simulation are SSA, SDE method and RSDE method.
120.  Regulation of KCNQ2/KCNQ3 current by G protein cycling (Suh et al 2004)
Receptor-mediated modulation of KCNQ channels regulates neuronal excitability. This study concerns the kinetics and mechanism of M1 muscarinic receptor-mediated regulation of the cloned neuronal M channel, KCNQ2/KCNQ3 (Kv7.2/Kv7.3). ... observations were successfully described by a kinetic model representing biochemical steps of the signaling cascade using published rate constants where available. The model supports the following sequence of events for this Gq-coupled signaling: A classical G-protein cycle, including competition for nucleotide-free G-protein by all nucleotide forms and an activation step requiring Mg2, followed by G-protein-stimulated phospholipase C and hydrolysis of PIP2, and finally PIP2 dissociation from binding sites for inositol lipid on the channels so that KCNQ current was suppressed. See paper for details and more.
121.  Resonance properties through Chirp stimulus responses (Narayanan Johnston 2007, 2008)
...we constructed a simple, single-compartment model with Ih as the only active current... we found that both resonance frequency and resonance strength increased monotonically with the increase in the h conductance, supporting the notion of a direct, graded relationship between h conductance and resonance properties... (Narayanan and Johnston, 2007). ...we show that the h channels introduce an apparent negative delay in the local voltage response of these neurons with respect to the injected current within the theta frequency range... we found that the total inductive phase increased monotonically with the h conductance, whereas it had a bell-shaped dependence on both the membrane voltage and the half-maximal activation voltage for the h conductance. (Narayanan and Johnston, 2008).
122.  Retinal Ganglion Cell: I-A (Benison et al 2001)
NEURON mod files for the K-A current from the papers: (model) Benison G, Keizer J, Chalupa LM, Robinson DW. Modeling temporal behavior of postnatal cat retinal ganglion cells. J.Theor.Biol. 210:187-199 (2001) and (experiment) Skaliora I, Robinson DW, Scobey RP, Chalupa LM., Properties of K+ conductances in cat retinal ganglion cells during the period of activity-mediated refinements in retinofugal pathways. Eur.J.Neurosci. 7:1558-1568 (1995).
123.  Retinal Ganglion Cell: I-CaN and I-CaL (Benison et al. 2001)
NEURON mod files for the CaN and CaL currents from the papers: Huang, S.-J. & Robinson, D.W. (1998). Activation and Inactivation properties of voltage-gated calcium currents in developing cat retinal ganglion cells. Neuroscience 85:239-247 (experimental) and Benison G. Keizer J., Chalupa L.M., Robinson D.W., (2001) J. theor. Biol. 210:187-199 (theoretical).
124.  Retinal Ganglion Cell: I-K (Skaliora et al 1995)
NEURON mod files for the K-DR current from the paper: Skaliora I, Robinson DW, Scobey RP, Chalupa LM. Properties of K+ conductances in cat retinal ganglion cells during the period of activity-mediated refinements in retinofugal pathways. Eur J Neurosci 1995 7(7):1558-1568. See the readme.txt file below for more information.
125.  Retinal Ganglion Cell: I-Na,t (Benison et al 2001)
NEURON mod files for the Na current from the papers: (model) Benison G, Keizer J, Chalupa LM, Robinson DW. Modeling temporal behavior of postnatal cat retinal ganglion cells. J Theor Biol. 2001 210:187-99 and a reference from this paper: (experimental) Skaliora I, Scobey RP, Chalupa LM. Prenatal development of excitability in cat retinal ganglion cells: action potentials and sodium currents. J Neurosci 1993 13:313-23. See the readme.txt file below for more information.
126.  Retinal Photoreceptor: I Potassium (Beech, Barnes 1989)
NEURON mod files for a Potassium current from the paper: Beech DJ, Barnes S. Characterization of a voltage-gated K+ channel that accelerates the rod response to dim light. Neuron 3:573-81 (1989).
127.  Rhesus Monkey Young and Aged L3 PFC Pyramidal Neurons (Rumbell et al. 2016)
A stereotypical pyramidal neuron morphology with ion channel parameter combinations that reproduce firing patterns of one young and one aged rhesus monkey L3 PFC pyramidal neurons. Parameters were found through an automated optimization method.
128.  Rod photoreceptor (Barnes and Hille 1989, Publio et al. 2006, Kourennyi and Liu et al. 2004)
This a conductance-based model of a rod photoreceptor cell based on other modeling works (Barnes and Hille 1989 and Publio et al. 2006 and Kourennyi and Liu et al. 2004 ). In this model four types of ionic channels identified in the inner segment of the rod: nonselective cation channel (h), delayed rectifying potassium channel (Kv), noninactivating potassium channel (Kx) and calcium channel (Ca) was used. The model accurately reproduces the rod response when stimulated with a simulated photocurrent signal. We can show the effect of nonselective cation channel. The absence of this channel cause increasing the peak amplitude and the time to reach the peak of voltage response and absence of transient mode in this response.
129.  Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005)
Detailed Markov models of IKs (the slow delayed rectifier K+ current) and its alpha-subunit KCNQ1 were developed. The model is compared to experiment in the paper. The role of IKs in disease and drug treatments is elucidated (the prevention of excessive action potential prolongation and development of arrhythmogenic early afterdepolarizations). See paper for more and details.
130.  Role of KCNQ1 and IKs in cardiac repolarization (Silva, Rudy 2005) (XPP)
Detailed Markov model of IKs (the slow delayed rectifier K+ current) is supplied here in XPP. The model is compared to experiment in the paper. The role of IKs in disease and drug treatments is elucidated (the prevention of excessive action potential prolongation and development of arrhythmogenic early afterdepolarizations). See also modeldb accession number 55748 code and reference for more and details. This XPP version of the model reproduces Figure 3C in the paper by default. These model files were submitted by: Dr. Sheng-Nan Wu, Han-Dong Chang, Jiun-Shian Wu Department of Physiology National Cheng Kung University Medical College
131.  Salamander retinal ganglion cell: ion channels (Fohlmeister, Miller 1997)
A realistic five (5) channel spiking model reproduces the bursting behavior of tiger salamander ganglion cells in the retina. Please see the readme for more information.
132.  Simulating ion channel noise in an auditory brainstem neuron model (Schmerl & McDonnell 2013)
" ... Here we demonstrate that biophysical models of channel noise can give rise to two kinds of recently discovered stochastic facilitation effects in a Hodgkin-Huxley-like model of auditory brainstem neurons. The first, known as slope-based stochastic resonance (SBSR), enables phasic neurons to emit action potentials that can encode the slope of inputs that vary slowly relative to key time constants in the model. The second, known as inverse stochastic resonance (ISR), occurs in tonically firing neurons when small levels of noise inhibit tonic firing and replace it with burstlike dynamics. ..." Preprint available at
133.  Simulation study of Andersen-Tawil syndrome (Sung et al 2006)
Patients with Andersen-Tawil syndrome (ATS) mostly have mutations on the KCNJ2 gene producing loss of function or dominant-negative suppression of the inward rectifier K(+) channel Kir2.1. However, clinical manifestations of ATS including dysmorphic features, periodic paralysis (hypo-, hyper-, or normokalemic), long QT, and ventricular arrhythmias (VA) are considerably variable. Using a modified dynamic Luo-Rudy simulation model of cardiac ventricular myocyte, we elucidate the mechanisms of VA in ATS. We adopted a kinetic model of KCNJ2 in which channel block by Mg(+2) and spermine was incorporated. In this study, we attempt to examine the effects of KCNJ2 mutations on the ventricular action potential (AP), single-channel Markovian models were reformulated and incorporated into the dynamic Luo-Rudy model for rapidly and slowly delayed rectifying K(+) currents and KCNJ2 channel. During pacing at 1.0 Hz with [K(+)]o at 5.4 mM, a stepwise 10% reduction of Kir2.1 channel conductance progressively prolonged the terminal repolarization phase of AP along with gradual depolarization of the resting membrane potential (RMP). At 90% reduction, early after- depolarizations (EADs) became inducible and RMP was depolarized to -55.0 mV (control: -90.1 mV) followed by emergence of spontaneous action potentials (SAP). Both EADs and SAP were facilitated by a decrease in [K(+)]o and suppressed by increase in [K(+)]o. beta-adrenergic stimulation enhanced delayed after-depolarizations (DADs) and could also facilitate EADs as well as SAP in the setting of low [K(+)]o and reduced Kir2.1 channel conductance. In conclusion, the spectrum of VA in ATS includes (1) triggered activity mediated by EADs and/or DADs, and (2) abnormal automaticity manifested as SAP. These VA can be aggravated by a decrease in [K(+)]o and beta-adrenergic stimulation, and may potentially induce torsades de pointes and cause sudden death. In patients with ATS, the hypokalemic form of periodic paralysis should have the highest propensity to VA especially during physical activities.
134.  Sodium currents activate without a delay (Baranauskas and Martina 2006)
Hodgkin and Huxley established that sodium currents in the squid giant axons activate after a delay, which is explained by the model of a channel with three identical independent gates that all have to open before the channel can pass current (the HH model). It is assumed that this model can adequately describe the sodium current activation time course in all mammalian central neurons, although there is no experimental evidence to support such a conjecture. We performed high temporal resolution studies of sodium currents gating in three types of central neurons. ... These results can be explained by a model with two closed states and one open state. ... This model captures all major properties of the sodium current activation. In addition, the proposed model reproduces the observed action potential shape more accurately than the traditional HH model. See paper for more and details.
135.  Space clamp problems in neurons with voltage-gated conductances (Bar-Yehuda and Korngreen 2008)
" ... using numerical simulations, we show that the distortions of voltage-gated K+ and Ca2+ currents are substantial even in neurons with short dendrites. The simulations also demonstrate that passive cable theory cannot be used to justify voltage-clamping of neurons, due to significant shunting to the reversal potential of the voltage-gated conductance during channel activation. ... "
136.  Spiking GridPlaceMap model (Pilly & Grossberg, PLoS One, 2013)
Development of spiking grid cells and place cells in the entorhinal-hippocampal system to represent positions in large spaces
137.  Spinal Motor Neuron: Na, K_A, and K_DR currents (Safronov, Vogel 1995)
NEURON mod files for the Na, K-A, and K-DR currents from the paper: Safronov, B.V. and Vogel,W. Single voltage-activated Na+ and K+ channels in the somata of rat motorneurons. Journal of Physiology 487.1:91-106 (1995). See the readme.txt file for more information.
138.  Spontaneous firing caused by stochastic channel gating (Chow, White 1996)
NEURON implementation of model of stochastic channel gating, resulting in spontaneous firing. Qualitatively reproduces the phenomena described in the reference.
139.  State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013)
A Markov model of sodium channels was developed that includes drug binding to fast inactivated states. This was incorporated into a model of the dentate gyrus to investigate the effects of anti-epileptic drugs on neuron and network properties.
140.  Stochastic automata network Markov model descriptors of coupled Ca2+ channels (Nguyen et al. 2005)
"... Here we present a formalism by which mathematical models for Ca2+-regulated Ca2+ release sites are derived from stochastic models of single-channel gating that include Ca2+ activation, Ca2+ inactivation, or both. Such models are stochastic automata networks (SANs) that involve a large number of functional transitions, that is, the transition probabilities of the infinitesimal generator matrix of one of the automata (i.e., an individual channel) may depend on the local [Ca2+] and thus the state of the other channels. Simulation and analysis of the SAN descriptors representing homogeneous clusters of intracellular Ca2+ channels show that (1) release site density can modify both the steady-state open probability and stochastic excitability of Ca2+ release sites, (2) Ca2+ inactivation is not a requirement for Ca2+ puffs or sparks, and (3) a single-channel model with a bell-shaped open probability curve does not lead to release site activity that is a biphasic function of release site density. ..."
141.  Stochastic Ih and Na-channels in pyramidal neuron dendrites (Kole et al 2006)
The hyperpolarization-activated cation current (Ih) plays an important role in regulating neuronal excitability, yet its native single-channel properties in the brain are essentially unknown. Here we use variance-mean analysis to study the properties of single Ih channels in the apical dendrites of cortical layer 5 pyramidal neurons in vitro. ... In contrast to the uniformly distributed single-channel conductance, Ih channel number increases exponentially with distance, reaching densities as high as approximately 550 channels/microm2 at distal dendritic sites. These high channel densities generate significant membrane voltage noise. By incorporating a stochastic model of Ih single-channel gating into a morphologically realistic model of a layer 5 neuron, we show that this channel noise is higher in distal dendritic compartments and increased threefold with a 10-fold increased single-channel conductance (6.8 pS) but constant Ih current density. ... These data suggest that, in the face of high current densities, the small single-channel conductance of Ih is critical for maintaining the fidelity of action potential output. See paper for more and details.
142.  Stochastic model of the olfactory cilium transduction and adaptation (Antunes et al 2014)
" ... In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). ... These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca2+)-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca2+, and it simulates the EOG (electroolfactogram) results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca2+ response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control GPCR cycling and tune the levels of second messengers in OSNs, and not only by CNG channel desensitization as previously thought. "
143.  Stochastic versions of the Hodgkin-Huxley equations (Goldwyn, Shea-Brown 2011)
A Matlab gui for simulating different channel noise models using the Hodgkin-Huxley equations. Methods provided and reviewed in Goldwyn and Shea-Brown (2011) are: current noise, subunit noise, conductance noise, and Markov chain, as well as the standard deterministic Hodgkin-Huxley model.
144.  Stochastic versions of the Hodgkin-Huxley equations (Goldwyn, Shea-Brown 2011) (pylab)
A pylab version from Alan Leggitt for simulating different channel noise models using the Hodgkin-Huxley equations. Methods provided and reviewed in Goldwyn and Shea-Brown (2011) are: current noise, subunit noise, conductance noise, and Markov chain, as well as the standard deterministic Hodgkin-Huxley model.
145.  Striatal Output Neuron (Mahon, Deniau, Charpier, Delord 2000)
Striatal output neurons (SONs) integrate glutamatergic synaptic inputs originating from the cerebral cortex. In vivo electrophysiological data have shown that a prior depolarization of SONs induced a short-term (1 sec)increase in their membrane excitability, which facilitated the ability of corticostriatal synaptic potentials to induce firing. Here we propose, using a computational model of SONs, that the use-dependent, short-term increase in the responsiveness of SONs mainly results from the slow kinetics of a voltage-dependent, slowly inactivating potassium A-current. This mechanism confers on SONs a form of intrinsic short-term memory that optimizes the synaptic input–output relationship as a function of their past activation.
146.  Subthreshold inact. of K channels modulates APs in bitufted interneurons (Korngreen et al 2005)
... In this study we show that in bitufted interneurones from layer 2/3 of the somatosensory cortex, the height and width of APs recorded at the soma are sensitive to changes in the resting membrane potential, suggesting subthreshold activity of voltage-gated conductances. Attributes of K+ currents examined in nucleated patches revealed a fast subthreshold-inactivating K+ conductance (Kf ) and a slow suprathreshold-inactivating K+ conductance (Ks ). Simulations of these K+ conductances, incorporated into a Hodgkin–Huxley-type model, suggested that during a single AP or during low frequency trains of APs, subthreshold inactivation of Kf was the primary modulator of AP shape, whereas during trains of APs the shape was governed to a larger degree by Ks resulting in the generation of smaller and broader APs. ... Compartmental simulation of the back-propagating AP suggested a mechanism for the modulation of the back-propagating AP height and width by subthreshold activation of Kf . We speculate that this signal may modulate retrograde GABA release and consequently depression of synaptic ef&#64257;cacy of excitatory input from neighbouring pyramidal neurones.
147.  Sympathetic Preganglionic Neurone (Briant et al. 2014)
A model of a sympathetic preganglionic neurone of muscle vasoconstrictor-type.
148.  Synergistic inhibitory action of oxcarbazepine on INa and IK (Huang et al. 2008)
"Oxcarbazepine (OXC), one of the newer anti-epileptic drugs, has been demonstrating its efficacy on wide-spectrum neuropsychiatric disorders. ... With the aid of patch-clamp technology, we first investigated the effects of OXC on ion currents in NG108-15 neuronal cells differentiated with cyclic AMP. We found OXC ... caused a reversible reduction in the amplitude of voltage-gated Na+ current (INa) ... and produce(d) a significant prolongation in the recovery of INa inactivation. ... Moreover, OXC could suppress the amplitude of delayed rectifier K+ current (IK(DR)), with no effect on M-type K+ current (IK(M)). ... Furthermore, the simulations, based on hippocampal pyramidal neurons (Pinsky-Rinzel model) and a network of the Hodgkin-Huxley model, were analysed to investigate the effect of OXC on action potentials. Taken together, our results suggest that the synergistic blocking effects on INa and IK(DR) may contribute to the underlying mechanisms through which OXC affects neuronal function in vivo."
149.  T channel currents (Vitko et al 2005)
Computer simulations predict that seven of the SNPs would increase firing of neurons, with three of them inducing oscillations at similar frequencises. 3 representative models from the paper have been submited: a wild-type (WT) recombinant Cav3.2 T-channel, and two of the mutants described in the Vitko et al., 2005 paper (C456S and R788C). See the paper for more and details.
150.  T-type Ca current in thalamic neurons (Wang et al 1991)
A model of the transient, low-threshold voltage-dependent (T-type) Ca2+ current is constructed using whole-cell voltage-clamp data from enzymatically isolated rat thalamocortical relay neurons. The T-type Ca2+ current is described according to the Hodgkin-Huxley scheme, using the m3h format, with rate constants determined from the experimental data.
151.  T-type Calcium currents (McRory et al 2001)
NEURON mod files for CaT currents from the paper McRory et al., J.Biol.Chem. 276:3999 (2001). In this paper, three members (alpha-1G, -1H, and -1I) of the LVA calcium channels family were studied. Kinetic parameters were derived from functional expression in transfected cells.
152.  Temporal decorrelation by intrinsic cellular dynamics (Wang et al 2003)
"... Recent investigations in primary visual (V1) cortical neurons have demonstrated that adaptation to prolonged changes in stimulus contrast is mediated in part through intrinsic ionic currents, a Ca2+ activated K+ current (IKCa) and especially a Na+ activated K+ current (IKNa). The present study was designed to test the hypothesis that the activation of adaptation ionic currents may provide a cellular mechanism for temporal decorrelation in V1. A conductance-based neuron model was simulated, which included an IKCa and an IKNa. We show that the model neuron reproduces the adaptive behavior of V1 neurons in response to high contrast inputs. ...". See paper for details and more.
153.  Thalamic Relay Neuron: I-h (McCormick, Pape 1990)
NEURON mod files for the Ih current from the paper: McCormick DA, Pape HC. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol. 1990 431:291-318.
154.  Thalamic Relay Neuron: I-T current (Williams, Stuart 2000)
NEURON mod files for the Ca-T current from the paper: Williams SR, Stuart GJ, Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci. 2000 20:1307-17. Contact if you have any questions about the implementation of the model.
155.  TTX-R Na+ current effect on cell response (Herzog et al 2001)
"Small dorsal root ganglion (DRG) neurons, which include nociceptors, express multiple voltage-gated sodium currents. In addition to a classical fast inactivating tetrodotoxin-sensitive (TTX-S) sodium current, many of these cells express a TTX-resistant (TTX-R) sodium current that activates near -70 mV and is persistent at negative potentials. To investigate the possible contributions of this TTX-R persistent (TTX-RP) current to neuronal excitability, we carried out computer simulations using the Neuron program with TTX-S and -RP currents, fit by the Hodgkin-Huxley model, that closely matched the currents recorded from small DRG neurons. ..." See paper for more and details.
156.  TTX-R Na+ current effect on cell response (Herzog et al 2001) (MATLAB)
"Small dorsal root ganglion (DRG) neurons, which include nociceptors, express multiple voltage-gated sodium currents. In addition to a classical fast inactivating tetrodotoxin-sensitive (TTX-S) sodium current, many of these cells express a TTX-resistant (TTX-R) sodium current that activates near -70 mV and is persistent at negative potentials. To investigate the possible contributions of this TTX-R persistent (TTX-RP) current to neuronal excitability, we carried out computer simulations using the Neuron program with TTX-S and -RP currents, fit by the Hodgkin-Huxley model, that closely matched the currents recorded from small DRG neurons. ..." See paper for more and details.
157.  Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++)
A mathematical model of the membrane action potential of the mammalian ventricular cell is introduced. The model is based, whenever possible, on recent single-cell and single-channel data and incorporates the possibility of changing extracellular potassium concentration [K]o. ... The results are consistent with recent experimental observations, and the model simulations relate these phenomena to the underlying ionic channel kinetics. See paper for more and details.
158.  Voltage and light-sensitive Channelrhodopsin-2 model (ChR2) (Williams et al. 2013)
" ... Focusing on one of the most widely used ChR2 mutants (H134R) with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, and used these data to develop a model of ChR2 with empirically-derived voltage- and irradiance- dependence, where parameters were fine-tuned via simulated annealing optimization. This ChR2 model offers: 1) accurate inward rectification in the current-voltage response across irradiances; 2) empirically-derived voltage- and light-dependent kinetics (activation, deactivation and recovery from inactivation); and 3) accurate amplitude and morphology of the response across voltage and irradiance settings. Temperature-scaling factors (Q10) were derived and model kinetics was adjusted to physiological temperatures. ... "
159.  Voltage and light-sensitive Channelrhodopsin-2 model (ChR2-H134R) (Williams et al. 2013) (NEURON)
" ... Focusing on one of the most widely used ChR2 mutants (H134R) with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, and used these data to develop a model of ChR2 with empirically-derived voltage- and irradiance- dependence, where parameters were fine-tuned via simulated annealing optimization. This ChR2 model offers: 1) accurate inward rectification in the current-voltage response across irradiances; 2) empirically-derived voltage- and light-dependent kinetics (activation, deactivation and recovery from inactivation); and 3) accurate amplitude and morphology of the response across voltage and irradiance settings. Temperature-scaling factors (Q10) were derived and model kinetics was adjusted to physiological temperatures. ... "
160.  VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017)
In our model of a midbrain VTA dopamine neuron, we show that the decay kinetics of the A-type potassium current can control the timing of rebound action potentials.
161.  Zebrafish Mauthner-cell model (Watanabe et al 2017)
The NEURON model files encode the channel generator and firing simulator for simulating development and differentiation of the Mauthner cell (M-cell) excitability in zebrafish. The channel generator enables us to generate arbitrary Na+ and K+ channels by changing parameters of a Hodgkin-Huxley model under emulation of two-electrode voltage-clamp recordings in Xenopus oocyte system. The firing simulator simulates current-clamp recordings to generate firing patterns of the model M-cell, which are implemented with arbitrary-generated basic Na+ and K+ conductances and low-threshold K+ channels Kv7.4/KCNQ4 and sole Kv1.1 or Kv1.1 coexpressed with Kvbeta2.
162.  Zonisamide-induced inhibition of the firing of APs in hippocampal neurons (Huang et al. 2007)
Zonisamide (ZNS), a synthetic benzisoxazole derivative, has been used as an alternative choice in the treatment of epilepsy with a better efficacy and safety profile. However, little is known regarding the mechanism of ZNS actions on ion currents in neurons. We thus investigated its effect on ion currents in differentiated hippocampal 19-7 cells. The ZNS (30 uM) reversibly increased the amplitude of K+ outward currents and paxilline (1 uM) was effective in suppressing ZNS-induced increase of K+ outward currents. In inside-out configuration, ZNS (30 uM) applied to the intracellular face of the membrane did not alter single-channel conductance; however, it did enhance the activity of large-conductance Ca2+-activated K+ (BKCa) channels primarily by decreasing mean closed time. The EC50 value for ZNS-stimulated BKCa channels was 34 uM. This drug caused a left shift in the activation curve of BKCa channels with no change in the gating charge of these channels. ZNS at a concentration greater than 100 uM also reduced the amplitude of A-type K+ current in these cells. A simulation modeling based on hippocampal CA3 pyramidal neurons (Pinsky-Rinzel model) was also analyzed to investigate the inhibitory effect of ZNS on the firing of simulated action potentials. Taken together, this study suggests that in hippocampal neurons, during the exposure to ZNS, the ZNS-mediated effects on BKCa channels and IA could be one of the ionic mechanisms through which it affects neuronal excitability.

Re-display model names without descriptions