Models that contain the Model Concept : Invertebrate

(Cell or neural network models that are related to, or derived from experiments with invertebrates (animals without a spine).)
Re-display model names without descriptions
    Models   Description
1.  A model of the femur-tibia control system in stick insects (Stein et al. 2008)
We studied the femur-tibia joint control system of the insect leg, and its switch between resistance reflex in posture control and "active reaction" in walking. The "active reaction" is basically a reversal of the resistance reflex. Both responses are elicited by the same sensory input and the same neuronal network (the femur-tibia network). The femur-tibia network was modeled by fitting the responses of model neurons to those obtained in animals. Each implemented neuron has a physiological counterpart. The strengths of 16 interneuronal pathways that integrate sensory input were then assigned three different values and varied independently, generating a database of more than 43 million network variants. The uploaded version contains the model that best represented the resistance reflex. Please see the README for more help. We demonstrate that the combinatorial code of interneuronal pathways determines motor output. A switch between different behaviors such as standing to walking can thus be achieved by altering the strengths of selected sensory integration pathways.
2.  A network model of tail withdrawal in Aplysia (White et al 1993)
The contributions of monosynaptic and polysynaptic circuitry to the tail-withdrawal reflex in the marine mollusk Aplysia californica were assessed by the use of physiologically based neural network models. Effects of monosynaptic circuitry were examined by the use of a two-layer network model with four sensory neurons in the input layer and one motor neuron in the output layer. Results of these simulations indicated that the monosynaptic circuit could not account fully for long-duration responses of tail motor neurons elicited by tail stimulation. A three-layer network model was constructed by interposing a layer of two excitatory interneurons between the input and output layers of the two-layer network model. The three-layer model could account for long-duration responses in motor neurons. Sensory neurons are a known site of plasticity in Aplysia. Synaptic plasticity at more than one locus modified dramatically the input-output relationship of the three-layer network model. This feature gave the model redundancy in its plastic properties and points to the possibility of distributed memory in the circuitry mediating withdrawal reflexes in Aplysia. Please see paper for more results and details.
3.  Burst induced synaptic plasticity in Apysia sensorimotor neurons (Phares et al 2003)
The Aplysia sensorimotor synapse is a key site of plasticity for several simple forms of learning. Intracellular stimulation of sensory neurons to fire a burst of action potentials at 10 Hz for 1 sec led to significant homosynaptic depression of postsynaptic responses. During the burst, the steady-state depressed phase of the postsynaptic response, which was only 20% of the initial EPSP of the burst, still contributed to firing the motor neuron. To explore the functional contribution of transient homosynaptic depression to the response of the motor neuron, computer simulations of the sensorimotor synapse with and without depression were compared. Depression allowed the motor neuron to produce graded responses over a wide range of presynaptic input strength. Thus, synaptic depression increased the dynamic range of the sensorimotor synapse and can, in principle, have a profound effect on information processing. Please see paper for results and details.
4.  Bursting activity of neuron R15 in Aplysia (Canavier et al 1991, Butera et al 1995)
An equivalent circuit model of the R15 bursting neuron in Aplysia has been combined with a fluid compartment model, resulting in a model that incorporates descriptions of most of the membrane ion channels that are known to exist in the somata of R15, as well as providing a Ca2+ balance on the cell. ... (from the second paper) we have implemented proposed mechanisms for the modulation of two ionic currents (IR and ISI) that play key roles in regulating its spontaneous electrical activity. The model was sufficient to simulate a wide range of endogenous activity in the presence of various concentrations of 5-HT or DA. See papers for more and details.
5.  C elegans pharynx simulation (Avery and Shtonda 2003)
Experimental obervations, measurements, and theoretical analysis of C. elegans pharynx feeding behavior function are reported in the paper. See the paper and the model files for more.
6.  Caffeine-induced electrical oscillations in Aplysia neurons (Komendantov, Kononenko 2000)
It has been found that in cultured Aplysia neurons bath applications of 40 mM cafffeine evokes oscillations of the membrane potential with about a 40 mV amplitude with a frequency of 0.2 to 0.5 Hz. The most probable mechanism of these caffeine-induced oscillations is inhibition of voltage-activated outward potassium current and, as can be seen from our mathematical modeling, slowdown of inactivation of inward sodium current. It seems likely that these oscillations have a purely membrane origin. Please see paper for results and details.
7.  Classic model of the Tritonia Swim CPG (Getting, 1989)
Classic model developed by Petter Getting of the 3-cell core CPG (DSI, C2, and VSI-B) mediating escape swimming in Tritonia diomedea. Cells use a hybrid integrate-and-fire scheme pioneered by Peter Getting. Each model cell is reconstructed from extensive physiological measurements to precisely mimic I-F curves, synaptic waveforms, and functional connectivity. **However, continued physiological measurements show that Getting may have inadvertently incorporated modulatory and or polysynaptic effects -- the properties of this model do *not* match physiological measurements in rested preparations.** This simulation reconstructs the Getting model as reported in: Getting (1989) 'Reconstruction of small neural networks' In Methods in Neural Modeling, 1st ed, p. 171-196. See also, an earlier version of this model reported in Getting (1983). Every attempt has been made to replicate the 1989 model as precisely as possible.
8.  Comparing correlation responses to motion estimation models (Salazar-Gatzimas et al. 2016)
Code to generate responses of HRC-like and BL-like model elementary motion detectors to correlated noise stimuli, including two models with more realistic temporal filtering.
9.  Computational Model of a Central Pattern Generator (Cataldo et al 2006)
The buccal ganglia of Aplysia contain a central pattern generator (CPG) that mediates rhythmic movements of the foregut during feeding. This CPG is a multifunctional circuit and generates at least two types of buccal motor patterns (BMPs), one that mediates ingestion (iBMP) and another that mediates rejection (rBMP). The present study used a computational approach to examine the ways in which an ensemble of identified cells and synaptic connections function as a CPG. Hodgkin-Huxley-type models were developed that mimicked the biophysical properties of these cells and synaptic connections. The results suggest that the currently identified ensemble of cells is inadequate to produce rhythmic neural activity and that several key elements of the CPG remain to be identified.
10.  Computational model of the distributed representation of operant reward memory (Costa et al. 2020)
Operant reward learning of feeding behavior in Aplysia increases the frequency and regularity of biting, as well as biases buccal motor patterns (BMPs) toward ingestion-like BMPs (iBMPs). The engram underlying this memory comprises cells that are part of a central pattern generating (CPG) circuit and includes increases in the intrinsic excitability of identified cells B30, B51, B63, and B65, and increases in B63–B30 and B63–B65 electrical synaptic coupling. To examine the ways in which sites of plasticity (individually and in combination) contribute to memory expression, a model of the CPG was developed. The model included conductance-based descriptions of cells CBI-2, B4, B8, B20, B30, B31, B34, B40, B51, B52, B63, B64, and B65, and their synaptic connections. The model generated patterned activity that resembled physiological BMPs, and implementation of the engram reproduced increases in frequency, regularity, and bias. Combined enhancement of B30, B63, and B65 excitabilities increased BMP frequency and regularity, but not bias toward iBMPs. Individually, B30 increased regularity and bias, B51 increased bias, B63 increased frequency, and B65 decreased all three BMP features. Combined synaptic plasticity contributed primarily to regularity, but also to frequency and bias. B63–B30 coupling contributed to regularity and bias, and B63–B65 coupling contributed to all BMP features. Each site of plasticity altered multiple BMP features simultaneously. Moreover, plasticity loci exhibited mutual dependence and synergism. These results indicate that the memory for operant reward learning emerged from the combinatoric engagement of multiple sites of plasticity.
11.  Continuous lateral oscillations as a mechanism for taxis in Drosophila larvae (Wystrach et al 2016)
" ...Our analysis of larvae motion reveals a rhythmic, continuous lateral oscillation of the anterior body, encompassing all head-sweeps, small or large, without breaking the oscillatory rhythm. Further, we show that an agent-model that embeds this hypothesis reproduces a surprising number of taxis signatures observed in larvae. Also, by coupling the sensory input to a neural oscillator in continuous time, we show that the mechanism is robust and biologically plausible. ..."
12.  Data-driven, HH-type model of the lateral pyloric (LP) cell in the STG (Nowotny et al. 2008)
This model was developed using voltage clamp data and existing LP models to assemble an initial set of currents which were then adjusted by extensive fitting to a long data set of an isolated LP neuron. The main points of the work are a) automatic fitting is difficult but works when the method is carefully adjusted to the problem (and the initial guess is good enough). b) The resulting model (in this case) made reasonable predictions for manipulations not included in the original data set, e.g., blocking some of the ionic currents. c) The model is reasonably robust against changes in parameters but the different parameters vary a lot in this respect. d) The model is suitable for use in a network and has been used for this purpose (Ivanchenko et al. 2008)
13.  Deterministic chaos in a mathematical model of a snail neuron (Komendantov and Kononenko 1996)
"Chaotic regimes in a mathematical model of pacemaker activity in the bursting neurons of a snail Helix pomatia, have been investigated. The model includes a slow-wave generating mechanism, a spike-generating mechanism, an inward Ca current, intracellular Ca ions, [Ca2+]in, their fast buffering and uptake by intracellular Ca stores, and a [Ca2+]in-inhibited Ca current. Chemosensitive voltage-activated conductance, gB*, responsible for termination of the spike burst, and chemosensitive sodium conductance, gNa*, responsible for the depolarization phase of the slow-wave, were used as control parameters. ... Time courses of the membrane potential and [Ca2+]in were employed to analyse different regimes in the model. ..."
14.  Differences between type A and B photoreceptors (Blackwell 2006)
In Hermissenda crassicornis, the memory of light associated with turbulence is stored as changes in intrinsic and synaptic currents in both type A and type B photoreceptors. These photoreceptor types exhibit qualitatively different responses to light and current injection, and these differences shape the spatiotemporal firing patterns that control behavior. Thus the objective of the study was to identify the mechanisms underlying these differences. The approach was to develop a type B model that reproduced characteristics of type B photoreceptors recorded in vitro, and then to create a type A model by modifying a select number of ionic currents. Comparison of type A models with characteristics of type A photoreceptors recorded in vitro revealed that type A and type B photoreceptors have five main differences, three that have been characterized experimentally and two that constitute hypotheses to be tested with experiments in the future. See paper for more and details.
15.  Drosophila projection neuron electrotonic structure (Gouwens and Wilson 2009)
We address the issue of how electrical signals propagate in Drosophila neurons by modeling the electrotonic structure of the antennal lobe projection neurons innervating glomerulus DM1. The readme file contains instructions for running the model.
16.  Drosophila T4 neuron (Gruntman et al 2018)
Passive, multi-compartment conductance-based model of a T4 cell. The model reproduces the neuron's response to moving stimuli via integration of spatially offset fast excitatory and slow inhibitory inputs.
17.  Effects of Acetyl-L-carnitine on neural transmission (Lombardo et al 2004)
Acetyl-L-carnitine is known to improve many aspects of the neural activity even if its exact role in neurotransmission is still unknown. This study investigates the effects of acetyl-L-carnitine in T segmental sensory neurons of the leech Hirudo medicinalis. These neurons are involved in some forms of neural plasticity associated with learning processes. Their physiological firing is accompanied by a large afterhyperpolarization that is mainly due to the Na+/K+ ATPase activity and partially to a Ca2+-dependent K+ current. A clear-cut hyperpolarization and a significant increase of the afterhyperpolarization have been recorded in T neurons of leeches injected with 2 mM acetyl-L-carnitine some days before. Acute treatments of 50 mM acetyl-L-carnitine induced similar effects in T cells of naive animals. Moreover, in these cells, widely arborized, the afterhyperpolarization seems to play an important role in determining the action potential transmission at neuritic bifurcations. A computational model of a T cell has been previously developed considering detailed data for geometry and the modulation of the pump current. Herein, we showed that to a larger afterhyperpolarization, due to the acetyl-L-carnitine-induced effects, corresponds a decrement in the number of action potentials reaching synaptic terminals.
18.  Enhanced Excitability in Hermissenda: modulation by 5-HT (Cai et al 2003)
Serotonin (5-HT) applied to the exposed but otherwise intact nervous system results in enhanced excitability of Hermissenda type-B photoreceptors. Several ion currents in the type-B photoreceptors are modulated by 5-HT, including the A-type K+ current (IK,A), sustained Ca2+ current (ICa,S), Ca-dependent K+ current (IK,Ca), and a hyperpolarization-activated inward rectifier current (Ih). In this study,we developed a computational model that reproduces physiological characteristics of type B photoreceptors, e.g. resting membrane potential, dark-adapted spike activity, spike width, and the amplitude difference between somatic and axonal spikes. We then used the model to investigate the contribution of different ion currents modulated by 5-HT to the magnitudes of enhanced excitability produced by 5-HT. See paper for results and more details.
19.  Escape response latency in the Giant Fiber System of Drosophila melanogastor (Augustin et al 2019)
"The Giant Fiber System (GFS) is a multi-component neuronal pathway mediating rapid escape response in the adult fruit-fly Drosophila melanogaster, usually in the face of a threatening visual stimulus. Two branches of the circuit promote the response by stimulating an escape jump followed by flight initiation. Our recent work demonstrated an age-associated decline in the speed of signal propagation through the circuit, measured as the stimulus-to-muscle depolarization response latency. The decline is likely due to the diminishing number of inter-neuronal gap junctions in the GFS of ageing flies. In this work, we presented a realistic conductance-based, computational model of the GFS that recapitulates our experimental results and identifies some of the critical anatomical and physiological components governing the circuit's response latency. According to our model, anatomical properties of the GFS neurons have a stronger impact on the transmission than neuronal membrane conductance densities. The model provides testable predictions for the effect of experimental interventions on the circuit's performance in young and ageing flies."
20.  Half-center oscillator database of leech heart interneuron model (Doloc-Mihu & Calabrese 2011)
We have created a database (HCO-db) of instances of a half-center oscillator computational model [Hill et al., 2001] for analyzing how neuronal parameters influence network activity. We systematically explored the parameter space of about 10.4 million simulated HCO instances and corresponding isolated neuron model simulations obtained by varying a set of selected parameters (maximal conductance of intrinsic and synaptic currents) in all combinations using a brute-force approach. We classified these HCO instances by their activity characteristics into identifiable groups. We built an efficient relational database table (HCO-db) with the resulting instances characteristics.
21.  How BK and SK channels benefit early vision (Li X et al 2019)
"Ca2+-activated K+ channels (BK and SK) are ubiquitous in synaptic circuits, but their role in network adaptation and sensory perception remains largely unknown. Using electrophysiological and behavioral assays and biophysical modeling, we discover how visual information transfer in mutants lacking the BK channel (dSlo- ), SK channel (dSK- ), or both (dSK- ;; dSlo- ) is shaped in the female fruit fly (Drosophila melanogaster) R1-R6 photoreceptor-LMC circuits (R-LMC-R system) through synaptic feedforward-feedback interactions and reduced R1-R6 Shaker and Shab K+ conductances. This homeostatic compensation is specific for each mutant, leading to distinctive adaptive dynamics. We show how these dynamics inescapably increase the energy cost of information and promote the mutants' distorted motion perception, determining the true price and limits of chronic homeostatic compensation in an in vivo genetic animal model. These results reveal why Ca2+-activated K+ channels reduce network excitability (energetics), improving neural adaptability for transmitting and perceiving sensory information. ..."
22.  Hyperpolarization-activated inward current and dynamic range of electrical synapse (Stein et al '22)
Electrical synaptic transmission and voltage-gated ionic currents are often studied independently from one another. This model allows to study the interactions between the hyperpolarization-activated inward ionic current and a rectifying electrical synapse. Two single compartment nonspiking neurons are coupled through a rectifying electrical synapse. Current pulses are applied into the presynaptic neuron. The amplitude of the electrical postsynaptic potentials is measured. Ih can be added to either the pre- or postsynaptic neuron, or both. The cells represent the the MCN1 and LG neurons in the crab stomatogastric ganglion.
23.  I A in Kenyon cells resemble Shaker currents (Pelz et al 1999)
Cultured Kenyon cells from the mushroom body of the honeybee, Apis mellifera, show a voltage-gated, fast transient K1 current that is sensitive to 4-aminopyridine, an A current. The kinetic properties of this A current and its modulation by extracellular K1 ions were investigated in vitro with the whole cell patch-clamp technique. The A current was isolated from other voltage-gated currents either pharmacologically or with suitable voltage-clamp protocols. Hodgkin- and Huxley-style mathematical equations were used for the description of this current and for the simulation of action potentials in a Kenyon cell model. The data of the A current were incorporated into a reduced computational model of the voltage-gated currents of Kenyon cells. In addition, the model contained a delayed rectifier K current, a Na current, and a leakage current. The model reproduces several experimental features and makes predictions. See paper for details and results.
24.  Interaction of leak and IMI conductance on the STG over broad temperature range (Stadele et al 2015)
The ZIP file contains a Hodgkin-Huxley based circuit model and the simulation environment MadSim used to study the interaction of leak and IMI on the gastric mill network of the crab (Cancer borealis) as represented in (C. Städele, S. Heigele and W. Stein, 2015) MadSim, the simulation environment used for this study, is freeware and included in the package.
25.  Kenyon cells in the honeybee (Wustenberg et al 2004)
The mushroom body of the insect brain is an important locus for olfactory information processing and associative learning. ... Current- and voltage-clamp analyses were performed on cultured Kenyon cells from honeybees. ... Voltage-clamp analyses characterized a fast transient Na+ current (INa), a delayed rectifier K+ current (IK,V) and a fast transient K+ current (IK,A). Using the neurosimulator SNNAP, a Hodgkin-Huxley type model was developed and used to investigate the roles of the different currents during spiking. The model led to the prediction of a slow transient outward current (IK,ST) that was subsequently identified by reevaluating the voltage-clamp data. Simulations indicated that the primary currents that underlie spiking are INa and IK,V, whereas IK,A and IK,ST primarily determined the responsiveness of the model to stimuli such constant or oscillatory injections of current. See paper for more details.
26.  Leech heart interneuron network model (Hill et al 2001, 2002)
We have created a computational model of the timing network that paces the heartbeat of the medicinal leech, Hirudo medicinalis. In the intact nerve cord, segmental oscillators are mutually entrained to the same cycle period. Although experiments have shown that the segmental oscillators are coupled by inhibitory coordinating interneurons, the underlying mechanisms of intersegmental coordination have not yet been elucidated. To help understand this coordination, we have created a simple computational model with two variants: symmetric and asymmetric. See references for more details. Biologically realistic network models with two, six, and eight cells and a tutorial are available at the links to Calabrese's web site below.
27.  Leech Mechanosensory Neurons: Synaptic Facilitation by Reflected APs (Baccus 1998)
This model by Stephen Baccus explores the phenomena of action potential (AP) propagation at branch boints in axons. APs are sometimes transmitted down the efferent processes and sometimes are reflected back to the axon of AP origin or neither. See the paper for details. The model zip file contains a readme.txt which list introductory steps to follow to run the simulation. Stephen Baccus's email address:
28.  Minimal cell model (Av-Ron et al 1991)
The minimal cell model (MCM) is a reduced Hodgkin-Huxley model that can exhibit excitable and oscillatory behavior. It consists of two ordinary differential equations, dV/dt for membrane voltage and dW/dt for potassium activation and sodium inactivation. The MCM has a stable membrane potential of -60mV. With constant input current of 10uA/cm2, it exhibits oscillations of 150Hz. It is based on the work by FitzHugh and Rinzel.
29.  Model of peristalsis in the dorsal blood vessel of Lumbriculus variegatus (Halfmann and Crisp 2011)
The blackworm, Lumbriculus variegatus, has a segmented dorsal blood vessel that acts as a peristaltic pump to move blood through its closed circulatory system. Here, we conducted a kinematic study using videography and computational modeling as a first step toward understanding the control of DBV pulsation. A simple feed-forward system of distributed, coupled neuronal oscillators is a sufficient model was a sufficient model to explain the control of pulsation in the blackworm.
30.  Modeling interactions in Aplysia neuron R15 (Yu et al 2004)
"The biophysical properties of neuron R15 in Aplysia endow it with the ability to express multiple modes of oscillatory electrical activity, such as beating and bursting. Previous modeling studies examined the ways in which membrane conductances contribute to the electrical activity of R15 and the ways in which extrinsic modulatory inputs alter the membrane conductances by biochemical cascades and influence the electrical activity. The goals of the present study were to examine the ways in which electrical activity influences the biochemical cascades and what dynamical properties emerge from the ongoing interactions between electrical activity and these cascades." See paper for more and details.
31.  Morris-Lecar model of the barnacle giant muscle fiber (Morris, Lecar 1981)
... This paper presents an analysis of the possible modes of behavior available to a system of two noninactivating conductance mechanisms, and indicates a good correspondence to the types of behavior exhibited by barnacle fiber. The differential equations of a simple equivalent circuit for the fiber are dealt with by means of some of the mathematical techniques of nonlinear mechanics. General features of the system are (a) a propensity to produce damped or sustained oscillations over a rather broad parameter range, and (b) considerable latitude in the shape of the oscillatory potentials. It is concluded that for cells subject to changeable parameters (either from cell to cell or with time during cellular activity), a system dominated by two noninactivating conductances can exhibit varied oscillatory and bistable behavior. See paper for details.
32.  Multifunctional control of feeding in Aplysia (Webster-Wood et al. 2020)
Hybrid Boolean network implementation of a functional model of key feeding behaviors (biting, swallowing, rejection) and behavioral switching induced by sensory cues. Incorporates known neural connectivity and a mechanical model of the feeding apparatus.
33.  Multiple modes of a conditional neural oscillator (Epstein, Marder 1990)
We present a model for a conditional bursting neuron consisting of five conductances: Hodgkin-Huxley type time- and voltage-dependent Na+ and K+ conductances, a calcium activated voltage-dependent K+ conductance, a calcium-inhibited time- and voltage-dependent Ca++ conductance, and a leakage Cl- conductance. Different bursting and silent modes and transitions between them are analyzed in the model and compared to bursting modes in experiment. See the paper for details.
34.  Neural Interactome: interactive simulation of a neuronal system (Kim et al 2019)
""Connectivity and biophysical processes determine the functionality of neuronal networks. We, therefore, developed a real-time framework, called Neural Interactome, to simultaneously visualize and interact with the structure and dynamics of such networks. Neural Interactome is a cross-platform framework, which combines graph visualization with the simulation of neural dynamics, or experimentally recorded multi neural time series, to allow application of stimuli to neurons to examine network responses. In addition, Neural Interactome supports structural changes, such as disconnection of neurons from the network (ablation feature). Neural dynamics can be explored on a single neuron level (using a zoom feature), back in time (using a review feature), and recorded (using presets feature). The development of the Neural Interactome was guided by generic concepts to be applicable to neuronal networks with different neural connectivity and dynamics. We implement the framework using a model of the nervous system of Caenorhabditis elegans (C. elegans) nematode, a model organism with resolved connectome and neural dynamics. We show that Neural Interactome assists in studying neural response patterns associated with locomotion and other stimuli. In particular, we demonstrate how stimulation and ablation help in identifying neurons that shape particular dynamics. We examine scenarios that were experimentally studied, such as touch response circuit, and explore new scenarios that did not undergo elaborate experimental studies."
35.  Optimal synaptic assignment for locomotory behavior in C. elegans (Rakowski & Karbowski 2017)
"The detailed knowledge of C. elegans connectome for 3 decades has not contributed dramatically to our understanding of worm’s behavior. One of main reasons for this situation has been the lack of data on the type of synaptic signaling between particular neurons in the worm’s connectome. The aim of this study was to determine synaptic polarities for each connection in a small pre-motor circuit controlling locomotion. Even in this compact network of just 7 neurons the space of all possible patterns of connection types (excitation vs. inhibition) is huge. To deal effectively with this combinatorial problem we devised a novel and relatively fast technique based on genetic algorithms and large-scale parallel computations, which we combined with detailed neurophysiological modeling of interneuron dynamics and compared the theory to the available behavioral data. As a result of these massive computations, we found that the optimal connectivity pattern that matches the best locomotory data is the one in which all interneuron connections are inhibitory, even those terminating on motor neurons. ..."
36.  Paired turbulence and light effect on calcium increase in Hermissenda (Blackwell 2004)
The sea slug Hermissenda learns to associate light and hair cell stimulation, but not when the stimuli are temporally uncorrelated...These issues were addressed using a multi-compartmental computer model of phototransduction, calcium dynamics, and ionic currents of the Hermissenda photoreceptor...simulations show that a potassium leak channel, which closes with an increase in calcium, is required to produce both the untrained LLD and the enhanced LLD due to the decrease in voltage dependent potassium currents.
37.  Regulation of a slow STG rhythm (Nadim et al 1998)
Frequency regulation of a slow rhythm by a fast periodic input. Nadim, F., Manor, Y., Nusbaum, M. P., Marder, E. (1998) J. Neurosci. 18: 5053-5067
38.  S cell network (Moss et al 2005)
Excerpts from the abstract: S cells form a chain of electrically coupled neurons that extends the length of the leech CNS and plays a critical role in sensitization during whole-body shortening. ... Serotonin ... increasedAP latency across the electrical synapse, suggesting that serotonin reduced coupling between S cells. ... Serotonin modulated instantaneous AP frequency when APs were initiated in separate S cells and in a computational model of S cell activity following mechanosensory input. Thus, serotonergic modulation of S cell electrical synapses may contribute to changes in the pattern of activity in the S cell network. See paper for more.
39.  Serotonergic modulation of Aplysia sensory neurons (Baxter et al 1999)
The present study investigated how the modulation of these currents altered the spike duration and excitability of sensory neurons and examined the relative contributions of PKA- and PKC-mediated effects to the actions of 5-HT. A Hodgkin-Huxley type model was developed that described the ionic conductances in the somata of sensory neurons. The descriptions of these currents and their modulation were based largely on voltageclamp data from sensory neurons. Simulations were preformed with the program SNNAP (Simulator for Neural Networks and Action Potentials). The model was sufficient to replicate empirical data that describes the membrane currents, action potential waveform and excitability as well as their modulation by application of 5-HT, increased levels of adenosine cyclic monophosphate or application of active phorbol esters. The results provide several predictions that warrant additional experimental investigation and illustrate the importance of considering indirect as well as direct effects of modulatory agents on the modulation of membrane currents. See paper for more details.
40.  Sloppy morphological tuning in identified neurons of the crustacean STG (Otopalik et al 2017)
" ...Theoretical studies suggest that morphology is tightly tuned to minimize wiring and conduction delay of synaptic events. We utilize high-resolution confocal microscopy and custom computational tools to characterize the morphologies of four neuron types in the stomatogastric ganglion (STG) of the crab Cancer borealis. Macroscopic branching patterns and fine cable properties are variable within and across neuron types. We compare these neuronal structures to synthetic minimal spanning neurite trees constrained by a wiring cost equation and find that STG neurons do not adhere to prevailing hypotheses regarding wiring optimization principles. In this highly-modulated and oscillating circuit, neuronal structures appear to be governed by a space-filling mechanism that outweighs the cost of inefficient wiring."
41.  Spike propagation and bouton activation in terminal arborizations (Luscher, Shiner 1990)
Action potential propagation in axons with bifurcations involving short collaterals with synaptic boutons has been simulated ... The architecture of the terminal arborizations has a profound effect on the activation pattern of synapses, suggesting that terminal arborizations not only distribute neural information to postsynaptic cells but may also be able to process neural information presynaptically. Please see paper for details.
42.  Squid axon (Hodgkin, Huxley 1952) (LabAXON)
The classic HH model of squid axon membrane implemented in LabAXON. Hodgkin, A.L., Huxley, A.F. (1952)
43.  Squid axon (Hodgkin, Huxley 1952) (NEURON)
The classic HH model of squid axon membrane implemented in NEURON. Hodgkin, A.L., Huxley, A.F. (1952)
44.  Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other)
An SBML (and related XPP and other formats) implementation of the classic HH paper is available in the BIOMODELS database. See far below for links.
45.  Squid axon (Hodgkin, Huxley 1952) (SNNAP)
The classic HH model of squid axon membrane implemented in SNNAP. Hodgkin, A.L., Huxley, A.F. (1952)
46.  Synaptic integration of an identified nonspiking interneuron in crayfish (Takashima et al 2006)
This GENESIS simulation shows how a single or compound excitatory synaptic potential evoked by mechanosensory stimulation spreads over the dendrites of the LDS interneuron that is one of the identified nonspiking interneurons in the central nervous system of crayfish Procambarus clarkii. The model is based on physiological experiments carried out by Akira Takashima using single-electrode voltage clamp techniques and also 3-D morphometry of the interneuron carried out by Ryou Hikosaka using confocal laser scanning microscopic techniques. The physiological and morphological studies were coordinated by Masakazu Takahata.
47.  Touch Sensory Cells (T Cells) of the Leech (Cataldo et al. 2004) (Scuri et al. 2007)
Bursts of spikes in leech T cells produce an AHP, which results from activation of a Na+/K+ pump and a Ca2+-dependent K+ current. Activity-dependent increases in the AHP are believed to induce conduction block of spikes in several regions of the neuron, which in turn, may decrease presynaptic invasion of spikes and thereby decrease transmitter release. To explore this possibility, we used the neurosimulator SNNAP to develop a multi-compartmental model of the T cell. Each compartment was modeled as an equivalent electrical circuit, in which some currents were regulated by intracellular Ca2+ and Na+. The membrane model consisted of a membrane capacitance (Cm), for which we used the value 1 uF/cm2, in parallel with two inward currents (Na+ and Ca2+), two K+ currents, a leak current and pump current. The model incorporated empirical data that describe the geometry of the cell and activity-dependent changes of the AHP (see paper for details). Simulations indicated that at some branching points, activity-dependent increases of the AHP reduced the number of spikes transmitted from the minor receptive field to the soma and beyond. These results suggest that the AHP can regulate spike conduction within the presynaptic arborizations of the cell and could in principle contribute to the synaptic depression that is correlated with increases in the AHP.
48.  Updated Tritonia Swim CPG (Calin-Jagemann et al. 2007)
Model of the 3-cell core CPG (DSI, C2, and VSI-B) mediating escape swimming in Tritonia diomedea. Cells use a hybrid integrate-and-fire scheme pioneered by Peter Getting. Each model cell is reconstructed from extensive physiological measurements to precisely mimic I-F curves, synaptic waveforms, and functional connectivity.
49.  Vertical System (VS) tangential cells network model (Trousdale et al. 2014)
Network model of the VS tangential cell system, with 10 cells per hemisphere. Each cell is a two compartment model with one compartment for dendrites and one for the axon. The cells are coupled through axonal gap junctions. The code allows to simulate responses of the VS network to a variety of visual stimuli to investigate coding as a function of gap junction strength.
50.  Vibration-sensitive Honeybee interneurons (Ai et al 2017)
"Female honeybees use the “waggle dance” to communicate the location of nectar sources to their hive mates. Distance information is encoded in the duration of the waggle phase (von Frisch, 1967). During the waggle phase, the dancer produces trains of vibration pulses, which are detected by the follower bees via Johnston's organ located on the antennae. To uncover the neural mechanisms underlying the encoding of distance information in the waggle dance follower, we investigated morphology, physiology, and immunohistochemistry of interneurons arborizing in the primary auditory center of the honeybee (Apis mellifera). We identified major interneuron types, named DL-Int-1, DL-Int-2, and bilateral DL-dSEG-LP, that responded with different spiking patterns to vibration pulses applied to the antennae. Experimental and computational analyses suggest that inhibitory connection plays a role in encoding and processing the duration of vibration pulse trains in the primary auditory center of the honeybee."
51.  Voltage-gated conductances can counteract filtering effect of membrane capacitance (Heras et al '16)
Phenomenological inductance generated by voltage-gated ionic conductances (Na or K) can increase the gain bandwidth product of subthreshold signaling (e.g. psps) in a neuron, reducing the attenuation and slowing caused by membrane capacitance.

Re-display model names without descriptions