Models that contain the Model Concept : Rate-coding model neurons

(In these mathematical models, the neurons contain a state variable which represent the frequencies at which the neurons are firing.)
Re-display model names without descriptions
    Models   Description
1.  A dendritic disinhibitory circuit mechanism for pathway-specific gating (Yang et al. 2016)
"While reading a book in a noisy café, how does your brain ‘gate in’ visual information while filtering out auditory stimuli? Here we propose a mechanism for such flexible routing of information flow in a complex brain network (pathway-specific gating), tested using a network model of pyramidal neurons and three classes of interneurons with connection probabilities constrained by data. We find that if inputs from different pathways cluster on a pyramidal neuron dendrite, a pathway can be gated-on by a disinhibitory circuit motif. ..."
2.  A dynamical model of the basal ganglia (Leblois et al 2006)
We propose a new model for the function and dysfunction of the basal ganglia (BG). The basal ganglia are a set of cerebral structures involved in motor control which dysfunction causes high-incidence pathologies such as Parkinson's disease (PD). Their precise motor functions remain unknown. The classical model of the BG that allowed for the discovery of new treatments for PD seems today outdated in several respects. Based on experimental observations, our model proposes a simple dynamical framework for the understanding of how BG may select motor programs to be executed. Moreover, we explain how this ability is lost and how tremor-related oscillations in neuronal activity may emerge in PD.
3.  A theory of ongoing activity in V1 (Goldberg et al 2004)
Ongoing spontaneous activity in the cerebral cortex exhibits complex spatiotemporal patterns in the absence of sensory stimuli. To elucidate the nature of this ongoing activity, we present a theoretical treatment of two contrasting scenarios of cortical dynamics: (1) fluctuations about a single background state and (2) wandering among multiple “attractor” states, which encode a single or several stimulus features. Studying simplified network rate models of the primary visual cortex (V1), we show that the single state scenario is characterized by fast and high-dimensional Gaussian-like fluctuations, whereas in the multiple state scenario the fluctuations are slow, low dimensional, and highly non-Gaussian. Studying a more realistic model that incorporates correlations in the feedforward input, spatially restricted cortical interactions, and an experimentally derived layout of pinwheels, we show that recent optical-imaging data of ongoing activity in V1 are consistent with the presence of either a single background state or multiple attractor states encoding many features.
4.  Alternative time representation in dopamine models (Rivest et al. 2009)
Combines a long short-term memory (LSTM) model of the cortex to a temporal difference learning (TD) model of the basal ganglia. Code to run simulations similar to the published data: Rivest, F, Kalaska, J.F., Bengio, Y. (2009) Alternative time representation in dopamine models. Journal of Computational Neuroscience. See http://dx.doi.org/10.1007/s10827-009-0191-1 for details.
5.  Basis for temporal filters in the cerebellar granular layer (Roessert et al. 2015)
This contains the models, functions and resulting data as used in: Roessert C, Dean P, Porrill J. At the Edge of Chaos: How Cerebellar Granular Layer Network Dynamics Can Provide the Basis for Temporal Filters. It is based on code used for Yamazaki T, Tanaka S (2005) Neural modeling of an internal clock. Neural Comput 17:1032-58
6.  Cat auditory nerve model (Zilany and Bruce 2006, 2007)
"This paper presents a computational model to simulate normal and impaired auditory-nerve (AN) fiber responses in cats. The model responses match physiological data over a wider dynamic range than previous auditory models. This is achieved by providing two modes of basilar membrane excitation to the inner hair cell (IHC) rather than one. ... The model responses are consistent with a wide range of physiological data from both normal and impaired ears for stimuli presented at levels spanning the dynamic range of hearing."
7.  Cerebellar nuclear neuron (Sudhakar et al., 2015)
"... In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. ..."
8.  Cerebellar Nucleus Neuron (Steuber, Schultheiss, Silver, De Schutter & Jaeger, 2010)
This is the GENESIS 2.3 implementation of a multi-compartmental deep cerebellar nucleus (DCN) neuron model with a full dendritic morphology and appropriate active conductances. We generated a good match of our simulations with DCN current clamp data we recorded in acute slices, including the heterogeneity in the rebound responses. We then examined how inhibitory and excitatory synaptic input interacted with these intrinsic conductances to control DCN firing. We found that the output spiking of the model reflected the ongoing balance of excitatory and inhibitory input rates and that changing the level of inhibition performed an additive operation. Rebound firing following strong Purkinje cell input bursts was also possible, but only if the chloride reversal potential was more negative than -70 mV to allow de-inactivation of rebound currents. Fast rebound bursts due to T-type calcium current and slow rebounds due to persistent sodium current could be differentially regulated by synaptic input, and the pattern of these rebounds was further influenced by HCN current. Our findings suggest that active properties of DCN neurons could play a crucial role for signal processing in the cerebellum.
9.  Coding of stimulus frequency by latency in thalamic networks (Golomb et al 2005)
The paper presents models of the rat vibrissa processing system including the posterior medial (POm) thalamus, ventroposterior medial (VPm) thalamus, and GABAB- mediated feedback inhibition from the reticular thalamic (Rt) nucleus. A clear match between the experimentally measured spike-rates and the numerically calculated rates for the full model occurs when VPm thalamus receives stronger brainstem input and weaker GABAB-mediated inhibition than POm thalamus.
10.  Comparison of full and reduced globus pallidus models (Hendrickson 2010)
In this paper, we studied what features of realistic full model activity patterns can and cannot be preserved by morphologically reduced models. To this end, we reduced the morphological complexity of a full globus pallidus neuron model possessing active dendrites and compared its spontaneous and driven responses to those of the reduced models.
11.  Cortex learning models (Weber at al. 2006, Weber and Triesch, 2006, Weber and Wermter 2006/7)
A simulator and the configuration files for three publications are provided. First, "A hybrid generative and predictive model of the motor cortex" (Weber at al. 2006) which uses reinforcement learning to set up a toy action scheme, then uses unsupervised learning to "copy" the learnt action, and an attractor network to predict the hidden code of the unsupervised network. Second, "A Self-Organizing Map of Sigma-Pi Units" (Weber and Wermter 2006/7) learns frame of reference transformations on population codes in an unsupervised manner. Third, "A possible representation of reward in the learning of saccades" (Weber and Triesch, 2006) implements saccade learning with two possible learning schemes for horizontal and vertical saccades, respectively.
12.  Cortico - Basal Ganglia Loop (Mulcahy et al 2020)
The model represents learning and reversal tasks and shows performance in control, Parkinsonian and Huntington disease conditions
13.  Development of modular activity of grid cells (Urdapilleta et al 2017)
This study explores the self-organization of modular activity of grid cells
14.  Development of orientation-selective simple cell receptive fields (Rishikesh and Venkatesh, 2003)
Implementation of a computational model for the development of simple-cell receptive fields spanning the regimes before and after eye-opening. The before eye-opening period is governed by a correlation-based rule from Miller (Miller, J. Neurosci., 1994), and the post eye-opening period is governed by a self-organizing, experience-dependent dynamics derived in the reference below.
15.  Dynamic dopamine modulation in the basal ganglia: Learning in Parkinson (Frank et al 2004,2005)
See README file for all info on how to run models under different tasks and simulated Parkinson's and medication conditions.
16.  Fisher and Shannon information in finite neural populations (Yarrow et al. 2012)
Here we model populations of rate-coding neurons with bell-shaped tuning curves and multiplicative Gaussian noise. This Matlab code supports the calculation of information theoretic (mutual information, stimulus-specific information, stimulus-specific surprise) and Fisher-based measures (Fisher information, I_Fisher, SSI_Fisher) in these population models. The information theoretic measures are computed by Monte Carlo integration, which allows computationally-intensive decompositions of the mutual information to be computed for relatively large populations (hundreds of neurons).
17.  Generating coherent patterns of activity from chaotic neural networks (Sussillo and Abbott 2009)
"Neural circuits display complex activity patterns both spontaneously and when responding to a stimulus or generating a motor output. How are these two forms of activity related? We develop a procedure called FORCE learning for modifying synaptic strengths either external to or within a model neural network to change chaotic spontaneous activity into a wide variety of desired activity patterns. ... Our results reproduce data on premovement activity in motor and premotor cortex, and suggest that synaptic plasticity may be a more rapid and powerful modulator of network activity than generally appreciated."
18.  Grid cells from place cells (Castro & Aguiar, 2014)
" ...Here we present a novel model for the emergence of gridlike firing patterns that stands on two key hypotheses: (1) spatial information in GCs is provided from PC activity and (2) grid fields result from a combined synaptic plasticity mechanism involving inhibitory and excitatory neurons mediating the connections between PCs and GCs. ..."
19.  Hippocampal CA1 pyramidal cell demonstrating dynamic mode switching (Berteau & Bullock 2020)
A simulated proposed single-cell mechanism for CA1’s behavior as an associative mismatch detector. Shifts in spiking mode (accomplished via KCNQ interaction with chloride leak currents) signal matches vs. mismatches.
20.  LGNcircuit: Minimal LGN network model of temporal processing of visual input (Norheim et al. 2012)
The responses of relay cells in the lateral geniculate nucleus (LGN) are shaped by their diverse set of impinging inputs: feedforward synaptic inputs stemming from retina, and feedback inputs stemming from the visual cortex and the thalamic reticular nucleus. This MATLAB model, with an easy-to-use graphical user interface (GUI), explores possible roles of these feedforward and feedback inputs in shaping the temporal part of the receptive fields of LGN relay cells with, so called, ON symmetry. A minimal mechanistic firing-rate model tailored to elucidate salient feedforward and feedback effects is considered including, in particular, feedforward excitation and inhibition (via interneurons) from retinal ON cells and excitatory and inhibitory (via thalamic reticular nucleus cells and interneurons) feedback from cortical ON and OFF cells. Various types of visual stimuli can be explored: flashing spots, impulses, sinusoidal gratings.
21.  Modular grid cell responses as a basis for hippocampal remapping (Monaco and Abbott 2011)
"Hippocampal place fields, the local regions of activity recorded from place cells in exploring rodents, can undergo large changes in relative location during remapping. This process would appear to require some form of modulated global input. Grid-cell responses recorded from layer II of medial entorhinal cortex in rats have been observed to realign concurrently with hippocampal remapping, making them a candidate input source. However, this realignment occurs coherently across colocalized ensembles of grid cells (Fyhn et al., 2007). The hypothesized entorhinal contribution to remapping depends on whether this coherence extends to all grid cells, which is currently unknown. We study whether dividing grid cells into small numbers of independently realigning modules can both account for this localized coherence and allow for hippocampal remapping. ..."
22.  Neural modeling of an internal clock (Yamazaki and Tanaka 2008)
"We studied a simple random recurrent inhibitory network. Despite its simplicity, the dynamics was so rich that activity patterns of neurons evolved with time without recurrence due to random recurrent connections among neurons. The sequence of activity patterns was generated by the trigger of an external signal, and the generation was stable against noise.... Therefore, a time passage from the trigger of an external signal could be represented by the sequence of activity patterns, suggesting that this model could work as an internal clock. ..."
23.  Neuromusculoskeletal modeling with neural and finite element models (Volk et al, 2021)
"In this study, we present a predictive NMS model that uses an embedded neural architecture within a finite element (FE) framework to simulate muscle activation. A previously developed neuromuscular model of a motor neuron was embedded into a simple FE musculoskeletal model. Input stimulation profiles from literature were simulated in the FE NMS model to verify effective integration of the software platforms. Motor unit recruitment and rate coding capabilities of the model were evaluated. The integrated model reproduced previously published output muscle forces with an average error of 0.0435 N. The integrated model effectively demonstrated motor unit recruitment and rate coding in the physiological range based upon motor unit discharge rates and muscle force output."
24.  Neuronal population models of intracerebral EEG (Wendling et al. 2005)
"... In this study, the authors relate electrophysiologic patterns typically observed during the transition from interictal to ictal activity in human mesial temporal lobe epilepsy (MTLE) to mechanisms (at a neuronal population level) involved in seizure generation through a computational model of EEG activity. Intracerebral EEG signals recorded from hippocampus in five patients with MTLE during four periods (during interictal activity, just before seizure onset, during seizure onset, and during ictal activity) were used to identify the three main parameters of a model of hippocampus EEG activity (related to excitation, slow dendritic inhibition and fast somatic inhibition). ... . Results demonstrated that the model generates very realistic signals for automatically identified parameters. They also showed that the transition from interictal to ictal activity cannot be simply explained by an increase in excitation and a decrease in inhibition but rather by time-varying ensemble interactions between pyramidal cells and local interneurons projecting to either their dendritic or perisomatic region (with slow and fast GABAA kinetics). Particularly, during preonset activity, an increasing dendritic GABAergic inhibition compensates a gradually increasing excitation up to a brutal drop at seizure onset when faster oscillations (beta and low gamma band, 15 to 40 Hz) are observed. ... These findings obtained from model identification in human temporal lobe epilepsy are in agreement with some results obtained experimentally, either on animal models of epilepsy or on the human epileptic tissue."
25.  Nicotinic control of dopamine release in nucleus accumbens (Maex et al. 2014)
Minimal model of the VTA (ventral segmental area) representing two (GABA versus dopamine) neuron populations and two subtypes of nicotinic receptors (alpha4beta2 versus alpha7). The model is used to tell apart circuit from receptor mechanisms in the nicotinic control of dopamine release and its pharmacological manipulation.
26.  Nonlinear neuronal computation based on physiologically plausible inputs (McFarland et al. 2013)
"... Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron’s inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron’s response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. ... ”
27.  Odor supported place cell model and goal navigation in rodents (Kulvicius et al. 2008)
" ... Here we model odor supported place cells by using a simple feed-forward network and analyze the impact of olfactory cues on place cell formation and spatial navigation. The obtained place cells are used to solve a goal navigation task by a novel mechanism based on self-marking by odor patches combined with a Q-learning algorithm. We also analyze the impact of place cell remapping on goal directed behavior when switching between two environments. ..."
28.  Olfactory bulb network: neurogenetic restructuring and odor decorrelation (Chow et al. 2012)
Adult neurogenesis in the olfactory bulb has been shown experimentally to contribute to perceptual learning. Using a computational network model we show that fundamental aspects of the adult neurogenesis observed in the olfactory bulb -- the persistent addition of new inhibitory granule cells to the network, their activity-dependent survival, and the reciprocal character of their synapses with the principal mitral cells -- are sufficient to restructure the network and to alter its encoding of odor stimuli adaptively so as to reduce the correlations between the bulbar representations of similar stimuli. The model captures the experimentally observed role of neurogenesis in perceptual learning and the enhanced response of young granule cells to novel stimuli. Moreover, it makes specific predictions for the type of odor enrichment that should be effective in enhancing the ability of animals to discriminate similar odor mixtures. NSF grant DMS-0719944.
29.  Parallel cortical inhibition processing enables context-dependent behavior (Kuchibhotla et al. 2016)
Physical features of sensory stimuli are fixed, but sensory perception is context dependent. The precise mechanisms that govern contextual modulation remain unknown. Here, we trained mice to switch between two contexts: passively listening to pure tones and performing a recognition task for the same stimuli. Two-photon imaging showed that many excitatory neurons in auditory cortex were suppressed during behavior, while some cells became more active. Whole-cell recordings showed that excitatory inputs were affected only modestly by context, but inhibition was more sensitive, with PV+, SOM+, and VIP+ interneurons balancing inhibition and disinhibition within the network. Cholinergic modulation was involved in context switching, with cholinergic axons increasing activity during behavior and directly depolarizing inhibitory cells. Network modeling captured these findings, but only when modulation coincidently drove all three interneuron subtypes, ruling out either inhibition or disinhibition alone as sole mechanism for active engagement. Parallel processing of cholinergic modulation by cortical interneurons therefore enables context-dependent behavior.
30.  Place and grid cells in a loop (Rennó-Costa & Tort 2017)
This model implements a loop circuit between place and grid cells. The model was used to explain place cell remapping and grid cell realignment. Grid cell model as a continuous attractor network. Place cells have recurrent attractor network. Rate models implemented with E%-MAX winner-take-all network dynamics, with gamma cycle time-step.
31.  Rate model of a cortical RS-FS-LTS network (Hayut et al. 2011)
A rate model of cortical networks composed of RS, FS and LTS neurons. Synaptic depression is modelled according to the Tsodyks-Markram scheme.
32.  Response properties of neocort. neurons to temporally modulated noisy inputs (Koendgen et al. 2008)
Neocortical neurons are classified by current–frequency relationship. This is a static description and it may be inadequate to interpret neuronal responses to time-varying stimuli. Theoretical studies (Brunel et al., 2001; Fourcaud-Trocmé et al. 2003; Fourcaud-Trocmé and Brunel 2005; Naundorf et al. 2005) suggested that single-cell dynamical response properties are necessary to interpret ensemble responses to fast input transients. Further, it was shown that input-noise linearizes and boosts the response bandwidth, and that the interplay between the barrage of noisy synaptic currents and the spike-initiation mechanisms determine the dynamical properties of the firing rate. In order to allow a reader to explore such simulations, we prepared a simple NEURON implementation of the experiments performed in Köndgen et al., 2008 (see also Fourcaud-Trocmé al. 2003; Fourcaud-Trocmé and Brunel 2005). In addition, we provide sample MATLAB routines for exploring the sandwich model proposed in Köndgen et al., 2008, employing a simple frequdency-domain filtering. The simulations and the MATLAB routines are based on the linear response properties of layer 5 pyramidal cells estimated by injecting a superposition of a small-amplitude sinusoidal wave and a background noise, as in Köndgen et al., 2008.
33.  Robust Reservoir Generation by Correlation-Based Learning (Yamazaki & Tanaka 2008)
"Reservoir computing (RC) is a new framework for neural computation. A reservoir is usually a recurrent neural network with fixed random connections. In this article, we propose an RC model in which the connections in the reservoir are modifiable. ... We apply our RC model to trace eyeblink conditioning. The reservoir bridged the gap of an interstimulus interval between the conditioned and unconditioned stimuli, and a readout neuron was able to learn and express the timed conditioned response."
34.  Roles of subthalamic nucleus and DBS in reinforcement conflict-based decision making (Frank 2006)
Deep brain stimulation (DBS) of the subthalamic nucleus dramatically improves the motor symptoms of Parkinson's disease, but causes cognitive side effects such as impulsivity. This model from Frank (2006) simulates the role of the subthalamic nucleus (STN) within the basal ganglia circuitry in decision making. The STN dynamically modulates network decision thresholds in proportion to decision conflict. The STN ``hold your horses'' signal adaptively allows the system more time to settle on the best choice when multiple options are valid. The model also replicates effects in Parkinson's patients on and off DBS in experiments designed to test the model (Frank et al, 2007).
35.  Sensory feedback in an oscillatory interference model of place cell activity (Monaco et al. 2011)
Many animals use a form of dead reckoning known as 'path integration' to maintain a sense of their location as they explore the world. However, internal motion signals and the neural activity that integrates them can be noisy, leading inevitably to inaccurate position estimates. The rat hippocampus and entorhinal cortex support a flexible system of spatial representation that is critical to spatial learning and memory. The position signal encoded by this system is thought to rely on path integration, but it must be recalibrated by familiar landmarks to maintain accuracy. To explore the interaction between path integration and external landmarks, we present a model of hippocampal activity based on the interference of theta-frequency oscillations that are modulated by realistic animal movements around a track. We show that spatial activity degrades with noise, but introducing external cues based on direct sensory feedback can prevent this degradation. When these cues are put into conflict with each other, their interaction produces a diverse array of response changes that resembles experimental observations. Feedback driven by attending to landmarks may be critical to navigation and spatial memory in mammals.

Re-display model names without descriptions