Models that contain the Gene Name : Nav1.8 SCN10A

Re-display model names without descriptions
    Models   Description
1.  A single kinetic model for all human voltage-gated sodium channels (Balbi et al, 2017)
Code for simulating macroscopic currents of sodium channels (Nav1.1. to Nav1.9), by means of a single kinetic model. Intensity-voltage curves, normalized conductance-voltage relationship, steady-state availability and recovery from inactivation are simulated.
2.  DRG neuron models investigate how ion channel levels regulate firing properties (Zheng et al 2019)
We present computational models for an Abeta-LTMR (low-threshold mechanoreceptor) and a C-LTMR expressing four Na channels and four K channels to investigate how the expression level of Kv1 and Kv4 regulate number of spikes (repetitive firing) and onset latency to action potentials in Abeta-LTMRs and C-LTMRs, respectively.
3.  Models of Na channels from a paper on the PKC control of I Na,P (Baker 2005)
"The tetrodotoxin-resistant (TTX-r) persistent Na(+) current, attributed to Na(V)1.9, was recorded in small (< 25 mum apparent diameter) dorsal root ganglion (DRG) neurones cultured from P21 rats and from adult wild-type and Na(V)1.8 null mice. ... Numerical simulation of the up-regulation qualitatively reproduced changes in sensory neurone firing properties. ..." Note: models of NaV1.8 and NaV1.9 and also persistent and transient Na channels that collectively model Nav 1.1, 1.6, and 1.7 are present in this model.
4.  TTX-R Na+ current effect on cell response (Herzog et al 2001)
"Small dorsal root ganglion (DRG) neurons, which include nociceptors, express multiple voltage-gated sodium currents. In addition to a classical fast inactivating tetrodotoxin-sensitive (TTX-S) sodium current, many of these cells express a TTX-resistant (TTX-R) sodium current that activates near -70 mV and is persistent at negative potentials. To investigate the possible contributions of this TTX-R persistent (TTX-RP) current to neuronal excitability, we carried out computer simulations using the Neuron program with TTX-S and -RP currents, fit by the Hodgkin-Huxley model, that closely matched the currents recorded from small DRG neurons. ..." See paper for more and details.

Re-display model names without descriptions