Leech S Cell: Modulation of Excitability by Serotonin (Burrell and Crisp 2008)

 Download zip file 
Help downloading and running models
Accession:102279
Serotonergic modulation of the afterhyperpolarization (AHP) contributes to the regulation of the excitability of the leech S cell, a neuron critical for sensitization of the shortening reflex. Pharmacological and physiological data suggest that three currents contribute to the S cell's afterhyperpolarization: a charybdotoxin-sensitive, fast calcium-dependent potassium current (fAHP); a tubocurare-sensitive, calcium-dependent potassium current (mAHP); and, a saxitoxin-sensitive, afterdepolarization current (ADP). This single-compartment model of the S cell is constructed using fAHP, mAHP and ADP currents, and shows that reduction of the conductances to mimic the effects of serotonin is sufficient to enhance excitability (repetitive firing).
Reference:
1 . Burrell BD, Crisp KM (2008) Serotonergic modulation of afterhyperpolarization in a neuron that contributes to learning in the leech. J Neurophysiol 99:605-16 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Axon;
Brain Region(s)/Organism:
Cell Type(s): Leech S cell;
Channel(s): I Na,t; I L high threshold; I K; I K,leak; I K,Ca; I Sodium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: SNNAP;
Model Concept(s):
Implementer(s): Crisp, Kevin [crisp at stolaf.edu];
Search NeuronDB for information about:  I Na,t; I L high threshold; I K; I K,leak; I K,Ca; I Sodium;
 
/
leechSCell
                            
File not selected

<- Select file from this column.
Loading data, please wait...