O-LM interneuron model (Lawrence et al. 2006)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:102288
Exploring the kinetics and distribution of the muscarinic potassium channel, IM, in 2 O-LM interneuron morphologies. Modulation of the ion channel by drugs such as XE991 (antagonist) and retigabine (agonist) are simulated in the models to examine the role of IM in spiking properties.
Reference:
1 . Lawrence JJ, Saraga F, Churchill JF, Statland JM, Travis KE, Skinner FK, McBain CJ (2006) Somatodendritic Kv7/KCNQ/M channels control interspike interval in hippocampal interneurons. J Neurosci 26:12325-38 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 interneuron oriens alveus GABA cell;
Channel(s): I L high threshold; I N; I T low threshold; I A; I K; I K,leak; I M; I h; I K,Ca;
Gap Junctions:
Receptor(s): Muscarinic;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Ion Channel Kinetics; Oscillations; Detailed Neuronal Models; Action Potentials;
Implementer(s):
Search NeuronDB for information about:  Hippocampus CA1 interneuron oriens alveus GABA cell; Muscarinic; I L high threshold; I N; I T low threshold; I A; I K; I K,leak; I M; I h; I K,Ca;
/
RichyandStarfish
readme.html
cad.mod *
ICaL.mod *
ICaT.mod *
Ih.mod
IKa.mod *
IKCa.mod *
Ikdrf.mod *
Ikdrfaxon.mod *
Ikdrs.mod *
Ikdrsaxon.mod *
Ikleakaxon.mod *
Ikleaksd.mod *
IMminret.mod *
IMmintau.mod *
Ipassaxon.mod *
Ipasssd.mod *
Naaxon.mod *
Nadend.mod *
Nasoma.mod *
SIN.mod *
fig9.hoc
initactiveproxRichy.hoc
initactiveproxStarfish.hoc
initactivesdRichy.hoc
initactivesdStarfish.hoc
initsomaRichy.hoc
initsomaStarfish.hoc
mosinit.hoc
Richytrunctest2.hoc
screenshot.jpg
Starfishtrunc.hoc
                            
TITLE CaGk
: Calcium activated K channel.
: Modified from Moczydlowski and Latorre (1983) J. Gen. Physiol. 82

UNITS {
	(molar) = (1/liter)
}

UNITS {
	(mV) =	(millivolt)
	(mA) =	(milliamp)
	(mM) =	(millimolar)
}


NEURON {
	SUFFIX kca
	USEION ca READ cai
	USEION k READ ek WRITE ik
	RANGE gkbar,gkca, ik
	GLOBAL oinf, tau
}

UNITS {
	FARADAY = (faraday)  (kilocoulombs)
	R = 8.313424 (joule/degC)
}

PARAMETER {
	celsius		(degC)
	v		(mV)
	gkbar=.01	(mho/cm2)	: Maximum Permeability
	cai = 5.e-5	(mM)
	ek		(mV)

	d1 = .84
	d2 = 1.
	k1 = .48e-3	(mM)
	k2 = .13e-6	(mM)
	abar = .28	(/ms)
	bbar = .48	(/ms)
        st=1            (1)
}

ASSIGNED {
	ik		(mA/cm2)
	oinf
	tau		(ms)
        gkca          (mho/cm2)
}

INITIAL {
        rate(v,cai)
        o=oinf
}

STATE {	o }		: fraction of open channels

BREAKPOINT {
	SOLVE state METHOD cnexp
	gkca = gkbar*o^st
	ik = gkca*(v - ek)
}

DERIVATIVE state {	: exact when v held constant; integrates over dt step
	rate(v, cai)
	o' = (oinf - o)/tau
}

FUNCTION alp(v (mV), c (mM)) (1/ms) { :callable from hoc
	alp = c*abar/(c + exp1(k1,d1,v))
}

FUNCTION bet(v (mV), c (mM)) (1/ms) { :callable from hoc
	bet = bbar/(1 + c/exp1(k2,d2,v))
}

FUNCTION exp1(k (mM), d, v (mV)) (mM) { :callable from hoc
	exp1 = k*exp(-2*d*FARADAY*v/R/(273.15 + celsius))
}

PROCEDURE rate(v (mV), c (mM)) { :callable from hoc
	LOCAL a
	a = alp(v,c)
	tau = 1/(a + bet(v, c))
	oinf = a*tau
}



Loading data, please wait...